IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v91y2016icp11-20.html
   My bibliography  Save this article

Day-ahead forecasting of solar power output from photovoltaic plants in the American Southwest

Author

Listed:
  • Larson, David P.
  • Nonnenmacher, Lukas
  • Coimbra, Carlos F.M.

Abstract

A forecasting method for hourly-averaged, day-ahead power output (PO) from photovoltaic (PV) power plants based on least-squares optimization of Numerical Weather Prediction (NWP) is presented. Three variations of the forecasting method are evaluated against PO data from two non-tracking, 1 MWp PV plants in California for 2011–2014. The method performance, including the inter-annual performance variability and the spatial smoothing of pairing the two plants, is evaluated in terms of standard error metrics, as well as in terms of the occurrence of severe forecasting error events. Results validate the performance of the proposed methodology as compared with previous studies. We also show that the bias errors in the irradiance inputs only have a limited impact on the PO forecast performance, since the method corrects for systematic errors in the irradiance forecast. The relative root mean square error (RMSE) for PO is in the range of 10.3%–14.0% of the nameplate capacity, and the forecast skill ranges from 13% to 23% over a persistence model. Over three years, an over-prediction of the daily PO exceeding 40% only occurs twice at one of the two plants under study, while the spatially averaged PO of the paired plants never exceeds this threshold.

Suggested Citation

  • Larson, David P. & Nonnenmacher, Lukas & Coimbra, Carlos F.M., 2016. "Day-ahead forecasting of solar power output from photovoltaic plants in the American Southwest," Renewable Energy, Elsevier, vol. 91(C), pages 11-20.
  • Handle: RePEc:eee:renene:v:91:y:2016:i:c:p:11-20
    DOI: 10.1016/j.renene.2016.01.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116300398
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.01.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. da Silva Fonseca Junior, Joao Gari & Oozeki, Takashi & Ohtake, Hideaki & Shimose, Ken-ichi & Takashima, Takumi & Ogimoto, Kazuhiko, 2014. "Regional forecasts and smoothing effect of photovoltaic power generation in Japan: An approach with principal component analysis," Renewable Energy, Elsevier, vol. 68(C), pages 403-413.
    2. Luoma, Jennifer & Mathiesen, Patrick & Kleissl, Jan, 2014. "Forecast value considering energy pricing in California," Applied Energy, Elsevier, vol. 125(C), pages 230-237.
    3. Li, Yanting & Su, Yan & Shu, Lianjie, 2014. "An ARMAX model for forecasting the power output of a grid connected photovoltaic system," Renewable Energy, Elsevier, vol. 66(C), pages 78-89.
    4. Fei Wang & Zengqiang Mi & Shi Su & Hongshan Zhao, 2012. "Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters," Energies, MDPI, vol. 5(5), pages 1-16, May.
    5. Cheng, Hsu-Yung & Yu, Chih-Chang & Lin, Sian-Jing, 2014. "Bi-model short-term solar irradiance prediction using support vector regressors," Energy, Elsevier, vol. 70(C), pages 121-127.
    6. Chu, Yinghao & Li, Mengying & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2015. "Real-time prediction intervals for intra-hour DNI forecasts," Renewable Energy, Elsevier, vol. 83(C), pages 234-244.
    7. Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2015. "Nearest-neighbor methodology for prediction of intra-hour global horizontal and direct normal irradiances," Renewable Energy, Elsevier, vol. 80(C), pages 770-782.
    8. Chaabene, Maher & Ben Ammar, Mohsen, 2008. "Neuro-fuzzy dynamic model with Kalman filter to forecast irradiance and temperature for solar energy systems," Renewable Energy, Elsevier, vol. 33(7), pages 1435-1443.
    9. Masa-Bote, D. & Castillo-Cagigal, M. & Matallanas, E. & Caamaño-Martín, E. & Gutiérrez, A. & Monasterio-Huelín, F. & Jiménez-Leube, J., 2014. "Improving photovoltaics grid integration through short time forecasting and self-consumption," Applied Energy, Elsevier, vol. 125(C), pages 103-113.
    10. Delfanti, Maurizio & Falabretti, Davide & Merlo, Marco, 2015. "Energy storage for PV power plant dispatching," Renewable Energy, Elsevier, vol. 80(C), pages 61-72.
    11. Voyant, Cyril & Muselli, Marc & Paoli, Christophe & Nivet, Marie-Laure, 2012. "Numerical weather prediction (NWP) and hybrid ARMA/ANN model to predict global radiation," Energy, Elsevier, vol. 39(1), pages 341-355.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nonnenmacher, Lukas & Kaur, Amanpreet & Coimbra, Carlos F.M., 2016. "Day-ahead resource forecasting for concentrated solar power integration," Renewable Energy, Elsevier, vol. 86(C), pages 866-876.
    2. Juan Du & Qilong Min & Penglin Zhang & Jinhui Guo & Jun Yang & Bangsheng Yin, 2018. "Short-Term Solar Irradiance Forecasts Using Sky Images and Radiative Transfer Model," Energies, MDPI, vol. 11(5), pages 1-16, May.
    3. Chu, Yinghao & Li, Mengying & Coimbra, Carlos F.M., 2016. "Sun-tracking imaging system for intra-hour DNI forecasts," Renewable Energy, Elsevier, vol. 96(PA), pages 792-799.
    4. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    5. Chao-Rong Chen & Unit Three Kartini, 2017. "k-Nearest Neighbor Neural Network Models for Very Short-Term Global Solar Irradiance Forecasting Based on Meteorological Data," Energies, MDPI, vol. 10(2), pages 1-18, February.
    6. Martins, Guilherme Santos & Giesbrecht, Mateus, 2021. "Clearness index forecasting: A comparative study between a stochastic realization method and a machine learning algorithm," Renewable Energy, Elsevier, vol. 180(C), pages 787-805.
    7. Cheng, Hsu-Yung, 2017. "Cloud tracking using clusters of feature points for accurate solar irradiance nowcasting," Renewable Energy, Elsevier, vol. 104(C), pages 281-289.
    8. Zheng, Lingwei & Liu, Zhaokun & Shen, Junnan & Wu, Chenxi, 2018. "Very short-term maximum Lyapunov exponent forecasting tool for distributed photovoltaic output," Applied Energy, Elsevier, vol. 229(C), pages 1128-1139.
    9. Voyant, Cyril & Paoli, Christophe & Muselli, Marc & Nivet, Marie-Laure, 2013. "Multi-horizon solar radiation forecasting for Mediterranean locations using time series models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 44-52.
    10. Cheng, Hsu-Yung & Yu, Chih-Chang & Lin, Chih-Lung, 2021. "Day-ahead to week-ahead solar irradiance prediction using convolutional long short-term memory networks," Renewable Energy, Elsevier, vol. 179(C), pages 2300-2308.
    11. Konstantinos Blazakis & Yiannis Katsigiannis & Georgios Stavrakakis, 2022. "One-Day-Ahead Solar Irradiation and Windspeed Forecasting with Advanced Deep Learning Techniques," Energies, MDPI, vol. 15(12), pages 1-25, June.
    12. Ahmed, Adil & Khalid, Muhammad, 2019. "A review on the selected applications of forecasting models in renewable power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 9-21.
    13. Zhu, Tingting & Wei, Haikun & Zhao, Xin & Zhang, Chi & Zhang, Kanjian, 2017. "Clear-sky model for wavelet forecast of direct normal irradiance," Renewable Energy, Elsevier, vol. 104(C), pages 1-8.
    14. Konduru Sudharshan & C. Naveen & Pradeep Vishnuram & Damodhara Venkata Siva Krishna Rao Kasagani & Benedetto Nastasi, 2022. "Systematic Review on Impact of Different Irradiance Forecasting Techniques for Solar Energy Prediction," Energies, MDPI, vol. 15(17), pages 1-39, August.
    15. Voyant, Cyril & Motte, Fabrice & Fouilloy, Alexis & Notton, Gilles & Paoli, Christophe & Nivet, Marie-Laure, 2017. "Forecasting method for global radiation time series without training phase: Comparison with other well-known prediction methodologies," Energy, Elsevier, vol. 120(C), pages 199-208.
    16. Chih-Chiang Wei, 2019. "Evaluation of Photovoltaic Power Generation by Using Deep Learning in Solar Panels Installed in Buildings," Energies, MDPI, vol. 12(18), pages 1-18, September.
    17. Pierro, Marco & Perez, Richard & Perez, Marc & Moser, David & Cornaro, Cristina, 2020. "Italian protocol for massive solar integration: Imbalance mitigation strategies," Renewable Energy, Elsevier, vol. 153(C), pages 725-739.
    18. Marzouq, Manal & El Fadili, Hakim & Zenkouar, Khalid & Lakhliai, Zakia & Amouzg, Mohammed, 2020. "Short term solar irradiance forecasting via a novel evolutionary multi-model framework and performance assessment for sites with no solar irradiance data," Renewable Energy, Elsevier, vol. 157(C), pages 214-231.
    19. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    20. Voyant, Cyril & Soubdhan, Ted & Lauret, Philippe & David, Mathieu & Muselli, Marc, 2015. "Statistical parameters as a means to a priori assess the accuracy of solar forecasting models," Energy, Elsevier, vol. 90(P1), pages 671-679.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:91:y:2016:i:c:p:11-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.