IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2216-d537097.html
   My bibliography  Save this article

Spatiotemporal Optimization for Short-Term Solar Forecasting Based on Satellite Imagery

Author

Listed:
  • Myeongchan Oh

    (New & Renewable Energy Resource Map Laboratory, Korea Institute of Energy Research, Daejeon 34129, Korea)

  • Chang Ki Kim

    (New & Renewable Energy Resource Map Laboratory, Korea Institute of Energy Research, Daejeon 34129, Korea)

  • Boyoung Kim

    (New & Renewable Energy Resource Map Laboratory, Korea Institute of Energy Research, Daejeon 34129, Korea)

  • Changyeol Yun

    (New & Renewable Energy Resource Map Laboratory, Korea Institute of Energy Research, Daejeon 34129, Korea)

  • Yong-Heack Kang

    (New & Renewable Energy Resource Map Laboratory, Korea Institute of Energy Research, Daejeon 34129, Korea)

  • Hyun-Goo Kim

    (New & Renewable Energy Resource Map Laboratory, Korea Institute of Energy Research, Daejeon 34129, Korea)

Abstract

Solar forecasting is essential for optimizing the integration of solar photovoltaic energy into a power grid. This study presents solar forecasting models based on satellite imagery. The cloud motion vector (CMV) model is the most popular satellite-image-based solar forecasting model. However, it assumes constant cloud states, and its accuracy is, thus, influenced by changes in local weather characteristics. To overcome this limitation, satellite images are used to provide spatial data for a new spatiotemporal optimized model for solar forecasting. Four satellite-image-based solar forecasting models (a persistence model, CMV, and two proposed models that use clear-sky index change) are evaluated. The error distributions of the models and their spatial characteristics over the test area are analyzed. All models exhibited different performances according to the forecast horizon and location. Spatiotemporal optimization of the best model is then conducted using best-model maps, and our results show that the skill score of the optimized model is 21% better than the previous CMV model. It is, thus, considered to be appropriate for use in short-term forecasting over large areas. The results of this study are expected to promote the use of spatial data in solar forecasting models, which could improve their accuracy and provide various insights for the planning and operation of photovoltaic plants.

Suggested Citation

  • Myeongchan Oh & Chang Ki Kim & Boyoung Kim & Changyeol Yun & Yong-Heack Kang & Hyun-Goo Kim, 2021. "Spatiotemporal Optimization for Short-Term Solar Forecasting Based on Satellite Imagery," Energies, MDPI, vol. 14(8), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2216-:d:537097
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2216/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2216/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
    2. Das, Utpal Kumar & Tey, Kok Soon & Seyedmahmoudian, Mehdi & Mekhilef, Saad & Idris, Moh Yamani Idna & Van Deventer, Willem & Horan, Bend & Stojcevski, Alex, 2018. "Forecasting of photovoltaic power generation and model optimization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 912-928.
    3. Sylvain Cros & Jordi Badosa & André Szantaï & Martial Haeffelin, 2020. "Reliability Predictors for Solar Irradiance Satellite-Based Forecast," Energies, MDPI, vol. 13(21), pages 1-21, October.
    4. Ren, Ye & Suganthan, P.N. & Srikanth, N., 2015. "Ensemble methods for wind and solar power forecasting—A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 82-91.
    5. Juan Du & Qilong Min & Penglin Zhang & Jinhui Guo & Jun Yang & Bangsheng Yin, 2018. "Short-Term Solar Irradiance Forecasts Using Sky Images and Radiative Transfer Model," Energies, MDPI, vol. 11(5), pages 1-16, May.
    6. Escrig, H. & Batlles, F.J. & Alonso, J. & Baena, F.M. & Bosch, J.L. & Salbidegoitia, I.B. & Burgaleta, J.I., 2013. "Cloud detection, classification and motion estimation using geostationary satellite imagery for cloud cover forecast," Energy, Elsevier, vol. 55(C), pages 853-859.
    7. Panagiotis Kosmopoulos & Dimitris Kouroutsidis & Kyriakoula Papachristopoulou & Panagiotis Ioannis Raptis & Akriti Masoom & Yves-Marie Saint-Drenan & Philippe Blanc & Charalampos Kontoes & Stelios Kaz, 2020. "Short-Term Forecasting of Large-Scale Clouds Impact on Downwelling Surface Solar Irradiation," Energies, MDPI, vol. 13(24), pages 1-22, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Llinet Benavides Cesar & Rodrigo Amaro e Silva & Miguel Ángel Manso Callejo & Calimanut-Ionut Cira, 2022. "Review on Spatio-Temporal Solar Forecasting Methods Driven by In Situ Measurements or Their Combination with Satellite and Numerical Weather Prediction (NWP) Estimates," Energies, MDPI, vol. 15(12), pages 1-23, June.
    2. Kosmopoulos, Panagiotis & Dhake, Harshal & Melita, Nefeli & Tagarakis, Konstantinos & Georgakis, Aggelos & Stefas, Avgoustinos & Vaggelis, Orestis & Korre, Valentina & Kashyap, Yashwant, 2024. "Multi-Layer Cloud Motion Vector Forecasting for Solar Energy Applications," Applied Energy, Elsevier, vol. 353(PB).
    3. Chu, Yinghao & Wang, Yiling & Yang, Dazhi & Chen, Shanlin & Li, Mengying, 2024. "A review of distributed solar forecasting with remote sensing and deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    4. Xie, Qiyue & Ma, Lin & Liu, Yao & Fu, Qiang & Shen, Zhongli & Wang, Xiaoli, 2023. "An improved SSA-BiLSTM-based short-term irradiance prediction model via sky images feature extraction," Renewable Energy, Elsevier, vol. 219(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shitao Wang & Mingjian Sun & Yi Shen, 2022. "Semantic Segmentation Algorithm-Based Calculation of Cloud Shadow Trajectory and Cloud Speed," Energies, MDPI, vol. 15(23), pages 1-15, November.
    2. Nunes Maciel, Joylan & Javier Gimenez Ledesma, Jorge & Hideo Ando Junior, Oswaldo, 2024. "Hybrid prediction method of solar irradiance applied to short-term photovoltaic energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    3. Nie, Yuhao & Li, Xiatong & Paletta, Quentin & Aragon, Max & Scott, Andea & Brandt, Adam, 2024. "Open-source sky image datasets for solar forecasting with deep learning: A comprehensive survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    5. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    6. Siripat Somchit & Palamy Thongbouasy & Chitchai Srithapon & Rongrit Chatthaworn, 2023. "Optimal Transmission Expansion Planning with Long-Term Solar Photovoltaic Generation Forecast," Energies, MDPI, vol. 16(4), pages 1-17, February.
    7. Zhou, Yi & Zhou, Nanrun & Gong, Lihua & Jiang, Minlin, 2020. "Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine," Energy, Elsevier, vol. 204(C).
    8. Pedregal, Diego J. & Trapero, Juan R., 2021. "Adjusted combination of moving averages: A forecasting system for medium-term solar irradiance," Applied Energy, Elsevier, vol. 298(C).
    9. Yagli, Gokhan Mert & Yang, Dazhi & Gandhi, Oktoviano & Srinivasan, Dipti, 2020. "Can we justify producing univariate machine-learning forecasts with satellite-derived solar irradiance?," Applied Energy, Elsevier, vol. 259(C).
    10. Wolfram Rozas & Rafael Pastor-Vargas & Angel Miguel García-Vico & José Carpio, 2023. "Consumption–Production Profile Categorization in Energy Communities," Energies, MDPI, vol. 16(19), pages 1-27, October.
    11. Rosato, Antonello & Panella, Massimo & Andreotti, Amedeo & Mohammed, Osama A. & Araneo, Rodolfo, 2021. "Two-stage dynamic management in energy communities using a decision system based on elastic net regularization," Applied Energy, Elsevier, vol. 291(C).
    12. Liu, Fa & Wang, Xunming & Sun, Fubao & Wang, Hong, 2022. "Correct and remap solar radiation and photovoltaic power in China based on machine learning models," Applied Energy, Elsevier, vol. 312(C).
    13. Victor Hugo Wentz & Joylan Nunes Maciel & Jorge Javier Gimenez Ledesma & Oswaldo Hideo Ando Junior, 2022. "Solar Irradiance Forecasting to Short-Term PV Power: Accuracy Comparison of ANN and LSTM Models," Energies, MDPI, vol. 15(7), pages 1-23, March.
    14. Miriam Benedetti & Francesca Bonfà & Vito Introna & Annalisa Santolamazza & Stefano Ubertini, 2019. "Real Time Energy Performance Control for Industrial Compressed Air Systems: Methodology and Applications," Energies, MDPI, vol. 12(20), pages 1-28, October.
    15. Hassan, Muhammed A. & Al-Ghussain, Loiy & Ahmad, Adnan Darwish & Abubaker, Ahmad M. & Khalil, Adel, 2022. "Aggregated independent forecasters of half-hourly global horizontal irradiance," Renewable Energy, Elsevier, vol. 181(C), pages 365-383.
    16. Jebli, Imane & Belouadha, Fatima-Zahra & Kabbaj, Mohammed Issam & Tilioua, Amine, 2021. "Prediction of solar energy guided by pearson correlation using machine learning," Energy, Elsevier, vol. 224(C).
    17. Qin, Jun & Jiang, Hou & Lu, Ning & Yao, Ling & Zhou, Chenghu, 2022. "Enhancing solar PV output forecast by integrating ground and satellite observations with deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    18. Samu, Remember & Calais, Martina & Shafiullah, G.M. & Moghbel, Moayed & Shoeb, Md Asaduzzaman & Nouri, Bijan & Blum, Niklas, 2021. "Applications for solar irradiance nowcasting in the control of microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    19. Terrén-Serrano, Guillermo & Martínez-Ramón, Manel, 2021. "Multi-layer wind velocity field visualization in infrared images of clouds for solar irradiance forecasting," Applied Energy, Elsevier, vol. 288(C).
    20. Mustafa Jaihuni & Jayanta Kumar Basak & Fawad Khan & Frank Gyan Okyere & Elanchezhian Arulmozhi & Anil Bhujel & Jihoon Park & Lee Deog Hyun & Hyeon Tae Kim, 2020. "A Partially Amended Hybrid Bi-GRU—ARIMA Model (PAHM) for Predicting Solar Irradiance in Short and Very-Short Terms," Energies, MDPI, vol. 13(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2216-:d:537097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.