IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3387-d187498.html
   My bibliography  Save this article

New Differential Protection Method for Multiterminal HVDC Cable Networks

Author

Listed:
  • Ricardo Granizo Arrabé

    (Department of Electrical Engineering, ETS Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutierrez Abascal, 2, 28006 Madrid, Spain)

  • Carlos A. Platero

    (Department of Electrical Engineering, ETS Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutierrez Abascal, 2, 28006 Madrid, Spain)

  • Fernando Álvarez Gómez

    (Department of Electrical Engineering, ETS Ingeniería y Diseño Industrial, Universidad Politécnica de Madrid, C/Ronda de Valencia, 3, 28012 Madrid, Spain)

  • Emilio Rebollo López

    (Department of Electrical Engineering, ETS Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutierrez Abascal, 2, 28006 Madrid, Spain)

Abstract

Ground faults in electrical power systems represent more than 90% of total faults. Their detection, location, and elimination are essential and must be carried out in a precise way to allow multiterminal high-voltage direct current (HVDC) cable networks to operate in stable conditions by removing only the faulty cable from service. This paper presents a new differential protection method based on the measurement of currents at both ends of the shields of power cables. This new method is cheaper and easier to set in operation compared to other protection methods that measure currents circulating in the active conductors. The values of such intensities and their polarities were evaluated to know which cable had a ground fault in a multiterminal HVDC cable network. The method was successfully validated by computer simulations, and experimental results were successfully obtained.

Suggested Citation

  • Ricardo Granizo Arrabé & Carlos A. Platero & Fernando Álvarez Gómez & Emilio Rebollo López, 2018. "New Differential Protection Method for Multiterminal HVDC Cable Networks," Energies, MDPI, vol. 11(12), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3387-:d:187498
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3387/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3387/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lei Wang & Hui Liu & Le Van Dai & Yuwei Liu, 2018. "Novel Method for Identifying Fault Location of Mixed Lines," Energies, MDPI, vol. 11(6), pages 1-19, June.
    2. Muhammad Haroon Nadeem & Xiaodong Zheng & Nengling Tai & Mehr Gul, 2018. "Identification and Isolation of Faults in Multi-terminal High Voltage DC Networks with Hybrid Circuit Breakers," Energies, MDPI, vol. 11(5), pages 1-21, April.
    3. Zheng Xu & Huangqing Xiao & Liang Xiao & Zheren Zhang, 2018. "DC Fault Analysis and Clearance Solutions of MMC-HVDC Systems," Energies, MDPI, vol. 11(4), pages 1-16, April.
    4. Van-Vinh Nguyen & Ho-Ik Son & Thai-Thanh Nguyen & Hak-Man Kim & Chan-Ki Kim, 2017. "A Novel Topology of Hybrid HVDC Circuit Breaker for VSC-HVDC Application," Energies, MDPI, vol. 10(10), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Lowczowski & Zbigniew Nadolny & Bartosz Olejnik, 2019. "Analysis of Cable Screen Currents for Diagnostics Purposes," Energies, MDPI, vol. 12(7), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Ahmad & Zhixin Wang, 2019. "A Hybrid DC Circuit Breaker with Fault-Current-Limiting Capability for VSC-HVDC Transmission System," Energies, MDPI, vol. 12(12), pages 1-16, June.
    2. Mani Ashouri & Filipe Faria da Silva & Claus Leth Bak, 2019. "A Harmonic Based Pilot Protection Scheme for VSC-MTDC Grids with PWM Converters," Energies, MDPI, vol. 12(6), pages 1-16, March.
    3. Ruixiong Yang & Ke Fang & Jianfu Chen & Yong Chen & Min Liu & Qingxu Meng, 2023. "A Novel Protection Strategy for Single Pole-to-Ground Fault in Multi-Terminal DC Distribution Network," Energies, MDPI, vol. 16(6), pages 1-16, March.
    4. Hyeon-Seung Lee & Young-Maan Cho & Kun-A Lee & Jae-Ho Rhee, 2022. "Fast Fault Detection and Active Isolation of Bidirectional Z-Source Circuit Breaker with Mechanical Switch," Energies, MDPI, vol. 15(23), pages 1-14, November.
    5. Piotr Jankowski & Janusz Mindykowski, 2018. "Study on the Hazard Limitation of Hybrid Circuit Breaker Actuator Operation," Energies, MDPI, vol. 11(2), pages 1-14, February.
    6. Avni Alidemaj & Qendrim Nika, 2020. "Important Factors for Consideration during the Specification of SF6 Circuit Breakers for High Voltage Generators," Energies, MDPI, vol. 13(14), pages 1-16, July.
    7. Shuhao Liu & Kunlun Han & Hongzheng Li & Tengyue Zhang & Fengyuan Chen, 2023. "A Two-Terminal Directional Protection Method for HVDC Transmission Lines of Current Fault Component Based on Improved VMD-Hilbert Transform," Energies, MDPI, vol. 16(19), pages 1-21, October.
    8. Navid Bayati & Hamid Reza Baghaee & Mehdi Savaghebi & Amin Hajizadeh & Mohsen N. Soltani & Zhengyu Lin, 2021. "DC Fault Current Analyzing, Limiting, and Clearing in DC Microgrid Clusters," Energies, MDPI, vol. 14(19), pages 1-19, October.
    9. Munif Nazmus Sakib & Sahar Pirooz Azad & Mehrdad Kazerani, 2022. "A Critical Review of Modular Multilevel Converter Configurations and Submodule Topologies from DC Fault Blocking and Ride-Through Capabilities Viewpoints for HVDC Applications," Energies, MDPI, vol. 15(11), pages 1-32, June.
    10. Dequan Wang & Minfu Liao & Rufan Wang & Tenghui Li & Jun Qiu & Jinjin Li & Xiongying Duan & Jiyan Zou, 2020. "Research on Vacuum Arc Commutation Characteristics of a Natural-Commutate Hybrid DC Circuit Breaker," Energies, MDPI, vol. 13(18), pages 1-15, September.
    11. Ho-Yun Lee & Mansoor Asif & Kyu-Hoon Park & Hyun-Min Mun & Bang-Wook Lee, 2019. "Appropriate Protection Scheme for DC Grid Based on the Half Bridge Modular Multilevel Converter System," Energies, MDPI, vol. 12(10), pages 1-25, May.
    12. Yuqi Pang & Gang Ma & Xunyu Liu & Xiaotian Xu & Xinyuan Zhang, 2021. "A New MMC Sub-Module Topology with DC Fault Blocking Capability and Capacitor Voltage Self-Balancing Capability," Energies, MDPI, vol. 14(12), pages 1-17, June.
    13. Damian Hallmann & Piotr Jankowski & Janusz Mindykowski & Kazimierz Jakubiuk & Mikołaj Nowak & Mirosław Woloszyn, 2022. "Modeling of Electrodynamic Phenomena in an Ultra-Rapid Inductive–Dynamic Actuator as Applied to Hybrid Short-Circuit Breakers—A Review Study," Energies, MDPI, vol. 15(24), pages 1-26, December.
    14. Sang-Yong Park & Geon-Woong Kim & Ji-Sol Jeong & Hyo-Sang Choi, 2022. "The Modeling of the LC Divergence Oscillation Circuit of a Superconducting DC Circuit Breaker Using PSCAD/EMTDC," Energies, MDPI, vol. 15(3), pages 1-14, January.
    15. Xiaomin Qi & Wei Pei & Luyang Li & Li Kong, 2018. "A Fast DC Fault Detection Method for Multi-Terminal AC/DC Hybrid Distribution Network Based on Voltage Change Rate of DC Current-Limiting Inductor," Energies, MDPI, vol. 11(7), pages 1-22, July.
    16. Rabanal, Arkaitz & Smith, Andrew Macmillan & Ahaotu, Chiagoro Chinonyerem & Tedeschi, Elisabetta, 2024. "Energy storage systems for services provision in offshore wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    17. Geon Kim & Jin Sung Lee & Jin Hyo Park & Hyun Duck Choi & Myoung Jin Lee, 2021. "A Zero Crossing Hybrid Bidirectional DC Circuit Breaker for HVDC Transmission Systems," Energies, MDPI, vol. 14(5), pages 1-12, March.
    18. Muhammad Haroon Nadeem & Xiaodong Zheng & Nengling Tai & Mehr Gul & Sohaib Tahir, 2018. "Analysis of Propagation Delay for Multi-Terminal High Voltage Direct Current Networks Interconnecting the Large-Scale Off-Shore Renewable Energy," Energies, MDPI, vol. 11(8), pages 1-15, August.
    19. Ana-Maria Moldovan & Mircea Ion Buzdugan, 2023. "Prediction of Faults Location and Type in Electrical Cables Using Artificial Neural Network," Sustainability, MDPI, vol. 15(7), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3387-:d:187498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.