IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4823-d413979.html
   My bibliography  Save this article

Research on Vacuum Arc Commutation Characteristics of a Natural-Commutate Hybrid DC Circuit Breaker

Author

Listed:
  • Dequan Wang

    (School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China)

  • Minfu Liao

    (School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China)

  • Rufan Wang

    (School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China)

  • Tenghui Li

    (School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China)

  • Jun Qiu

    (School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China)

  • Jinjin Li

    (School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China)

  • Xiongying Duan

    (School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China)

  • Jiyan Zou

    (School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China)

Abstract

Vacuum arc commutation is an important process in natural-commutate hybrid direct current (DC) circuit breaker (NHCB) interruption, as the duration of vacuum arc commutation will directly affect the arcing time and interrupting time of NHCB. In this paper, the vacuum arc commutation model of NHCB was established by simplifying solid-state switch (SS) and vacuum arc voltage. Through theoretical analysis and experiments, the vacuum arc commutation characteristics of NHCB were studied. The mathematical formula of the effect of main parameters on the duration of vacuum arc commutation is obtained, and the changing law of the influence of the main parameters on the duration of the vacuum arc commutation is explored. The concept of vacuum arc commutation coefficient is proposed, and it is a key parameter that influences the vacuum arc commutation characteristics. The research on the characteristics of vacuum arc commutation can provide theoretical foundation for the structure and parameter optimization of NHCB and other equipment that uses vacuum arc commutation.

Suggested Citation

  • Dequan Wang & Minfu Liao & Rufan Wang & Tenghui Li & Jun Qiu & Jinjin Li & Xiongying Duan & Jiyan Zou, 2020. "Research on Vacuum Arc Commutation Characteristics of a Natural-Commutate Hybrid DC Circuit Breaker," Energies, MDPI, vol. 13(18), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4823-:d:413979
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4823/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4823/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Ahmad & Zhixin Wang, 2019. "A Hybrid DC Circuit Breaker with Fault-Current-Limiting Capability for VSC-HVDC Transmission System," Energies, MDPI, vol. 12(12), pages 1-16, June.
    2. Muhammad Haroon Nadeem & Xiaodong Zheng & Nengling Tai & Mehr Gul, 2018. "Identification and Isolation of Faults in Multi-terminal High Voltage DC Networks with Hybrid Circuit Breakers," Energies, MDPI, vol. 11(5), pages 1-21, April.
    3. Chunyang Gu & Pat Wheeler & Alberto Castellazzi & Alan J. Watson & Francis Effah, 2017. "Semiconductor Devices in Solid-State/Hybrid Circuit Breakers: Current Status and Future Trends," Energies, MDPI, vol. 10(4), pages 1-25, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Young-Maan Cho & Hyun-Jong Park & Jae-Jun Lee & Kun-A Lee, 2022. "Analysis of Characteristics of Low Voltage Circuit Breaker by External Magnetic Field," Energies, MDPI, vol. 15(21), pages 1-15, November.
    2. Jun He & Ke Wang & Jiangang Li, 2021. "Application of an Improved Mayr-Type Arc Model in Pyro-Breakers Utilized in Superconducting Fusion Facilities," Energies, MDPI, vol. 14(14), pages 1-11, July.
    3. Mehdi Moradian & Tek Tjing Lie & Kosala Gunawardane, 2023. "DC Circuit Breaker Evolution, Design, and Analysis," Energies, MDPI, vol. 16(17), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sang-Yong Park & Geon-Woong Kim & Ji-Sol Jeong & Hyo-Sang Choi, 2022. "The Modeling of the LC Divergence Oscillation Circuit of a Superconducting DC Circuit Breaker Using PSCAD/EMTDC," Energies, MDPI, vol. 15(3), pages 1-14, January.
    2. Muhammad Ahmad & Zhixin Wang, 2019. "A Hybrid DC Circuit Breaker with Fault-Current-Limiting Capability for VSC-HVDC Transmission System," Energies, MDPI, vol. 12(12), pages 1-16, June.
    3. Ricardo Granizo Arrabé & Carlos A. Platero & Fernando Álvarez Gómez & Emilio Rebollo López, 2018. "New Differential Protection Method for Multiterminal HVDC Cable Networks," Energies, MDPI, vol. 11(12), pages 1-16, December.
    4. Avni Alidemaj & Qendrim Nika, 2020. "Important Factors for Consideration during the Specification of SF6 Circuit Breakers for High Voltage Generators," Energies, MDPI, vol. 13(14), pages 1-16, July.
    5. Evgeniy Safonov & Vladimir Frolov & Ruslan Zhiligotov & Yuri Petrenya, 2023. "On the Problems of Current Limitations in Networks Based on Power Semiconductor Devices," Energies, MDPI, vol. 16(16), pages 1-14, August.
    6. Young-Maan Cho & Hyun-Jong Park & Jae-Jun Lee & Kun-A Lee, 2022. "Analysis of Characteristics of Low Voltage Circuit Breaker by External Magnetic Field," Energies, MDPI, vol. 15(21), pages 1-15, November.
    7. Muhammad Haroon Nadeem & Xiaodong Zheng & Nengling Tai & Mehr Gul & Sohaib Tahir, 2018. "Analysis of Propagation Delay for Multi-Terminal High Voltage Direct Current Networks Interconnecting the Large-Scale Off-Shore Renewable Energy," Energies, MDPI, vol. 11(8), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4823-:d:413979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.