IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p941-d141202.html
   My bibliography  Save this article

DC Fault Analysis and Clearance Solutions of MMC-HVDC Systems

Author

Listed:
  • Zheng Xu

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Huangqing Xiao

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Liang Xiao

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Zheren Zhang

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract

In this paper, the DC short-circuit fault and corresponding clearance solutions of modular multilevel converter-based high-voltage direct current (MMC-HVDC) systems are analyzed in detail. Firstly, the analytical expressions of DC fault currents before and after blocking the MMC are derived based on the operation circuits. Before blocking the MMC, the sub-module (SM) capacitor discharge current is the dominant component of the DC fault current. It will reach the blocking threshold value in several milliseconds. After blocking the MMC, the SM capacitor is no longer discharged. Therefore, the fault current from the AC system becomes the dominant component. Meanwhile, three DC fault clearance solutions and the corresponding characteristics are discussed in detail, including tripping AC circuit breaker, adopting the full-bridge MMC and employing the DC circuit breaker. A simulation model of the MMC-HVDC is realized in PSCAD/EMTDC and the results of the proposed analytical expressions are compared with those of the simulation. The results show that the analytical DC fault currents coincide well with the simulation results.

Suggested Citation

  • Zheng Xu & Huangqing Xiao & Liang Xiao & Zheren Zhang, 2018. "DC Fault Analysis and Clearance Solutions of MMC-HVDC Systems," Energies, MDPI, vol. 11(4), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:941-:d:141202
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/941/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/941/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicolosi, Marco, 2010. "Wind power integration and power system flexibility-An empirical analysis of extreme events in Germany under the new negative price regime," Energy Policy, Elsevier, vol. 38(11), pages 7257-7268, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruixiong Yang & Ke Fang & Jianfu Chen & Yong Chen & Min Liu & Qingxu Meng, 2023. "A Novel Protection Strategy for Single Pole-to-Ground Fault in Multi-Terminal DC Distribution Network," Energies, MDPI, vol. 16(6), pages 1-16, March.
    2. Geon Kim & Jin Sung Lee & Jin Hyo Park & Hyun Duck Choi & Myoung Jin Lee, 2021. "A Zero Crossing Hybrid Bidirectional DC Circuit Breaker for HVDC Transmission Systems," Energies, MDPI, vol. 14(5), pages 1-12, March.
    3. Munif Nazmus Sakib & Sahar Pirooz Azad & Mehrdad Kazerani, 2022. "A Critical Review of Modular Multilevel Converter Configurations and Submodule Topologies from DC Fault Blocking and Ride-Through Capabilities Viewpoints for HVDC Applications," Energies, MDPI, vol. 15(11), pages 1-32, June.
    4. Ho-Yun Lee & Mansoor Asif & Kyu-Hoon Park & Hyun-Min Mun & Bang-Wook Lee, 2019. "Appropriate Protection Scheme for DC Grid Based on the Half Bridge Modular Multilevel Converter System," Energies, MDPI, vol. 12(10), pages 1-25, May.
    5. Ricardo Granizo Arrabé & Carlos A. Platero & Fernando Álvarez Gómez & Emilio Rebollo López, 2018. "New Differential Protection Method for Multiterminal HVDC Cable Networks," Energies, MDPI, vol. 11(12), pages 1-16, December.
    6. Yuqi Pang & Gang Ma & Xunyu Liu & Xiaotian Xu & Xinyuan Zhang, 2021. "A New MMC Sub-Module Topology with DC Fault Blocking Capability and Capacitor Voltage Self-Balancing Capability," Energies, MDPI, vol. 14(12), pages 1-17, June.
    7. Rabanal, Arkaitz & Smith, Andrew Macmillan & Ahaotu, Chiagoro Chinonyerem & Tedeschi, Elisabetta, 2024. "Energy storage systems for services provision in offshore wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    8. Navid Bayati & Hamid Reza Baghaee & Mehdi Savaghebi & Amin Hajizadeh & Mohsen N. Soltani & Zhengyu Lin, 2021. "DC Fault Current Analyzing, Limiting, and Clearing in DC Microgrid Clusters," Energies, MDPI, vol. 14(19), pages 1-19, October.
    9. Xiaomin Qi & Wei Pei & Luyang Li & Li Kong, 2018. "A Fast DC Fault Detection Method for Multi-Terminal AC/DC Hybrid Distribution Network Based on Voltage Change Rate of DC Current-Limiting Inductor," Energies, MDPI, vol. 11(7), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
    2. Nicolosi, Marco, 2011. "The impact of RES-E policy setting on integration effects - A detailed analysis of capacity expansion and dispatch results," MPRA Paper 31835, University Library of Munich, Germany.
    3. Zhang, J. & Meng, M. & Wang, David, Z.W., 2019. "A dynamic pricing scheme with negative prices in dockless bike sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 201-224.
    4. Andreas Gerster, 2016. "Negative price spikes at power markets: the role of energy policy," Journal of Regulatory Economics, Springer, vol. 50(3), pages 271-289, December.
    5. Maria Juliana Suarrez Foréro & Frédéric Lantz & Pierre Nicolas & Patrice Geoffron, 2022. "The Impact of Electric Vehicle Fleets on the European Electricity Markets: Evidences from the German Passenger Car Fleet and Power Generation Sector," Working Papers hal-03898558, HAL.
    6. Katz, Jonas, 2014. "Linking meters and markets: Roles and incentives to support a flexible demand side," Utilities Policy, Elsevier, vol. 31(C), pages 74-84.
    7. Figueiredo, Nuno Carvalho & Silva, Patrícia Pereira da & Cerqueira, Pedro A., 2016. "It is windy in Denmark: Does market integration suffer?," Energy, Elsevier, vol. 115(P2), pages 1385-1399.
    8. Pahle, Michael & Schill, Wolf-Peter & Gambardella, Christian & Tietjen, Oliver, 2016. "Renewable Energy Support, Negative Prices, and Real-time Pricing," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 37, pages 147-169.
    9. Haas, Reinhard & Duic, Neven & Auer, Hans & Ajanovic, Amela & Ramsebner, Jasmine & Knapek, Jaroslav & Zwickl-Bernhard, Sebastian, 2023. "The photovoltaic revolution is on: How it will change the electricity system in a lasting way," Energy, Elsevier, vol. 265(C).
    10. Gürtler, Marc & Paulsen, Thomas, 2018. "The effect of wind and solar power forecasts on day-ahead and intraday electricity prices in Germany," Energy Economics, Elsevier, vol. 75(C), pages 150-162.
    11. Kyritsis, Evangelos & Andersson, Jonas & Serletis, Apostolos, 2017. "Electricity prices, large-scale renewable integration, and policy implications," Energy Policy, Elsevier, vol. 101(C), pages 550-560.
    12. Bahramian, Pejman & Jenkins, Glenn P. & Milne, Frank, 2021. "The displacement impacts of wind power electricity generation: Costly lessons from Ontario," Energy Policy, Elsevier, vol. 152(C).
    13. Foued Saâdaoui, 2013. "The Price and Trading Volume Dynamics Relationship in the EEX Power Market: A Wavelet Modeling," Computational Economics, Springer;Society for Computational Economics, vol. 42(1), pages 47-69, June.
    14. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2020. "The impact of the integration of renewable energy sources in the electricity price formation: is the Merit-Order Effect occurring in Portugal?," Utilities Policy, Elsevier, vol. 66(C).
    15. Simon Hagemann & Christoph Weber, 2013. "An Empirical Analysis of Liquidity and its Determinants in The German Intraday Market for Electricity," EWL Working Papers 1317, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Oct 2013.
    16. Chris Johnathon & Ashish Prakash Agalgaonkar & Joel Kennedy & Chayne Planiden, 2021. "Analyzing Electricity Markets with Increasing Penetration of Large-Scale Renewable Power Generation," Energies, MDPI, vol. 14(22), pages 1-15, November.
    17. Jean-Michel Glachant & Arthur Henriot, 2013. "Melting-pots and salad bowls: the current debate on electricity market design for RES integration," Working Papers EPRG 1329, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    18. Crampes, Claude & Renault, Jérôme, 2018. "Supply flexibility in electricity markets," TSE Working Papers 18-964, Toulouse School of Economics (TSE).
    19. Brijs, Tom & De Vos, Kristof & De Jonghe, Cedric & Belmans, Ronnie, 2015. "Statistical analysis of negative prices in European balancing markets," Renewable Energy, Elsevier, vol. 80(C), pages 53-60.
    20. Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:941-:d:141202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.