IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i2p416-d131385.html
   My bibliography  Save this article

Study on the Hazard Limitation of Hybrid Circuit Breaker Actuator Operation

Author

Listed:
  • Piotr Jankowski

    (Department of Marine Electrical Power Engineering, Gdynia Maritime University Poland, 81-225 Gdynia, Poland)

  • Janusz Mindykowski

    (Department of Marine Electrical Power Engineering, Gdynia Maritime University Poland, 81-225 Gdynia, Poland)

Abstract

The paper deals with a key issue, how to limit the hazard and assure reliability, safety and repeatability of operation of selected critical devices protecting electrical power systems. The main research is focused on the incorrect operation of hybrid switches caused by random disturbances of the thyristor gate signals in the electrodynamic drive coil power supply circuit. Firstly, a pilot experiment on the operation of hybrid circuit breaker actuators under random disturbance conditions was carried out and the results are presented. Next, an in-depth operation analysis, based on experimental and simulation research, according to setting conditions of the circuit breaker actuator parameters such as capacitance, voltage and switching time was performed. A simulation study with the use of a field–circumferential model in the Ansys Maxwell program of electrodynamic propulsion of rectilinear motion, which enables energy transfer from the capacitor bank to the actuator coil power supply at selected time intervals, was executed. The study analysed the impact of the discontinuity of energy transfer on the dynamic properties of the actuator and some recommendations for designers and users on how to limit this hazard are formulated.

Suggested Citation

  • Piotr Jankowski & Janusz Mindykowski, 2018. "Study on the Hazard Limitation of Hybrid Circuit Breaker Actuator Operation," Energies, MDPI, vol. 11(2), pages 1-14, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:416-:d:131385
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/2/416/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/2/416/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shimin Xue & Jie Lian & Jinlong Qi & Boyang Fan, 2017. "Pole-to-Ground Fault Analysis and Fast Protection Scheme for HVDC Based on Overhead Transmission Lines," Energies, MDPI, vol. 10(7), pages 1-17, July.
    2. Van-Vinh Nguyen & Ho-Ik Son & Thai-Thanh Nguyen & Hak-Man Kim & Chan-Ki Kim, 2017. "A Novel Topology of Hybrid HVDC Circuit Breaker for VSC-HVDC Application," Energies, MDPI, vol. 10(10), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao Yu & Fan Yang & Xing Li & Shaogui Ai & Yongning Huang & Yiping Fan & Wei Du, 2019. "Static Voltage Sharing Design of a Sextuple-Break 363 kV Vacuum Circuit Breaker," Energies, MDPI, vol. 12(13), pages 1-12, June.
    2. Damian Hallmann & Piotr Jankowski & Janusz Mindykowski & Kazimierz Jakubiuk & Mikołaj Nowak & Mirosław Woloszyn, 2022. "Modeling of Electrodynamic Phenomena in an Ultra-Rapid Inductive–Dynamic Actuator as Applied to Hybrid Short-Circuit Breakers—A Review Study," Energies, MDPI, vol. 15(24), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangyu Pei & Guangfu Tang & Shengmei Zhang, 2018. "A Novel Pilot Protection Principle Based on Modulus Traveling-Wave Currents for Voltage-Sourced Converter Based High Voltage Direct Current (VSC-HVDC) Transmission Lines," Energies, MDPI, vol. 11(9), pages 1-20, September.
    2. Hyeon-Seung Lee & Young-Maan Cho & Kun-A Lee & Jae-Ho Rhee, 2022. "Fast Fault Detection and Active Isolation of Bidirectional Z-Source Circuit Breaker with Mechanical Switch," Energies, MDPI, vol. 15(23), pages 1-14, November.
    3. Muhammad Ahmad & Zhixin Wang, 2019. "A Hybrid DC Circuit Breaker with Fault-Current-Limiting Capability for VSC-HVDC Transmission System," Energies, MDPI, vol. 12(12), pages 1-16, June.
    4. Mani Ashouri & Filipe Faria da Silva & Claus Leth Bak, 2019. "A Harmonic Based Pilot Protection Scheme for VSC-MTDC Grids with PWM Converters," Energies, MDPI, vol. 12(6), pages 1-16, March.
    5. Ricardo Granizo Arrabé & Carlos A. Platero & Fernando Álvarez Gómez & Emilio Rebollo López, 2018. "New Differential Protection Method for Multiterminal HVDC Cable Networks," Energies, MDPI, vol. 11(12), pages 1-16, December.
    6. Rui Liang & Zhi Yang & Nan Peng & Chenglei Liu & Firuz Zare, 2017. "Asynchronous Fault Location in Transmission Lines Considering Accurate Variation of the Ground-Mode Traveling Wave Velocity," Energies, MDPI, vol. 10(12), pages 1-18, November.
    7. Damian Hallmann & Piotr Jankowski & Janusz Mindykowski & Kazimierz Jakubiuk & Mikołaj Nowak & Mirosław Woloszyn, 2022. "Modeling of Electrodynamic Phenomena in an Ultra-Rapid Inductive–Dynamic Actuator as Applied to Hybrid Short-Circuit Breakers—A Review Study," Energies, MDPI, vol. 15(24), pages 1-26, December.
    8. Xiangyu Zheng & Rong Jia & Linling Gong & Guangru Zhang & Xiangyu Pei, 2019. "An Optimized Coordination Strategy between Line Main Protection and Hybrid DC Breakers for VSC-Based DC Grids Using Overhead Transmission Lines," Energies, MDPI, vol. 12(8), pages 1-13, April.
    9. Yongchun Yang & Xiaodan Wang & Jingjing Luo & Jie Duan & Yajing Gao & Hong Li & Xiangning Xiao, 2017. "Multi-Objective Coordinated Planning of Distributed Generation and AC/DC Hybrid Distribution Networks Based on a Multi-Scenario Technique Considering Timing Characteristics," Energies, MDPI, vol. 10(12), pages 1-29, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:416-:d:131385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.