IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3263-d185039.html
   My bibliography  Save this article

Study of the Intelligent Behavior of a Maximum Photovoltaic Energy Tracking Fuzzy Controller

Author

Listed:
  • Gul Filiz Tchoketch Kebir

    (Wind Energy Research Laboratory, Université du Québec à Rimouski, 300, Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
    Laboratoire des Dispositifs de Communication et de Conversion Photovoltaïque, Département d’Électronique, École Nationale Polytechnique, 10, Avenue Hassen Badi, El Harrach, Alger 16200, Algerie)

  • Cherif Larbes

    (Laboratoire des Dispositifs de Communication et de Conversion Photovoltaïque, Département d’Électronique, École Nationale Polytechnique, 10, Avenue Hassen Badi, El Harrach, Alger 16200, Algerie)

  • Adrian Ilinca

    (Wind Energy Research Laboratory, Université du Québec à Rimouski, 300, Allée des Ursulines, Rimouski, QC G5L 3A1, Canada)

  • Thameur Obeidi

    (Wind Energy Research Laboratory, Université du Québec à Rimouski, 300, Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
    Laboratoire des Dispositifs de Communication et de Conversion Photovoltaïque, Département d’Électronique, École Nationale Polytechnique, 10, Avenue Hassen Badi, El Harrach, Alger 16200, Algerie)

  • Selma Tchoketch Kebir

    (Laboratoire des Dispositifs de Communication et de Conversion Photovoltaïque, Département d’Électronique, École Nationale Polytechnique, 10, Avenue Hassen Badi, El Harrach, Alger 16200, Algerie)

Abstract

The Maximum Power Point Tracking (MPPT) strategy is commonly used to maximize the produced power from photovoltaic generators. In this paper, we proposed a control method with a fuzzy logic approach that offers significantly high performance to get a maximum power output tracking, which entails a maximum speed of power achievement, a good stability, and a high robustness. We use a fuzzy controller, which is based on a special choice of a combination of inputs and outputs. The choice of inputs and outputs, as well as fuzzy rules, was based on the principles of mathematical analysis of the derived functions (slope) for the purpose of finding the optimum. Also, we have proved that we can achieve the best results and answers from the system photovoltaic (PV) with the simplest fuzzy model possible by using only 3 sets of linguistic variables to decompose the membership functions of the inputs and outputs of the fuzzy controller. We compare this powerful controller with conventional perturb and observe (P&O) controllers. Then, we make use of a Matlab-Simulink ® model to simulate the behavior of the PV generator and power converter, voltage, and current, using both the P&O and our fuzzy logic-based controller. Relative performances are analyzed and compared under different scenarios for fixed or varied climatic conditions.

Suggested Citation

  • Gul Filiz Tchoketch Kebir & Cherif Larbes & Adrian Ilinca & Thameur Obeidi & Selma Tchoketch Kebir, 2018. "Study of the Intelligent Behavior of a Maximum Photovoltaic Energy Tracking Fuzzy Controller," Energies, MDPI, vol. 11(12), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3263-:d:185039
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3263/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3263/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Farahat, M.A. & Metwally, H.M.B. & Abd-Elfatah Mohamed, Ahmed, 2012. "Optimal choice and design of different topologies of DC–DC converter used in PV systems, at different climatic conditions in Egypt," Renewable Energy, Elsevier, vol. 43(C), pages 393-402.
    2. Reza Reisi, Ali & Hassan Moradi, Mohammad & Jamasb, Shahriar, 2013. "Classification and comparison of maximum power point tracking techniques for photovoltaic system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 433-443.
    3. Patcharaprakiti, Nopporn & Premrudeepreechacharn, Suttichai & Sriuthaisiriwong, Yosanai, 2005. "Maximum power point tracking using adaptive fuzzy logic control for grid-connected photovoltaic system," Renewable Energy, Elsevier, vol. 30(11), pages 1771-1788.
    4. Larbes, C. & Aït Cheikh, S.M. & Obeidi, T. & Zerguerras, A., 2009. "Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic system," Renewable Energy, Elsevier, vol. 34(10), pages 2093-2100.
    5. Po-Chen Cheng & Bo-Rei Peng & Yi-Hua Liu & Yu-Shan Cheng & Jia-Wei Huang, 2015. "Optimization of a Fuzzy-Logic-Control-Based MPPT Algorithm Using the Particle Swarm Optimization Technique," Energies, MDPI, vol. 8(6), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Batyr Orazbayev & Dinara Kozhakhmetova & Ryszard Wójtowicz & Janusz Krawczyk, 2020. "Modeling of a Catalytic Cracking in the Gasoline Production Installation with a Fuzzy Environment," Energies, MDPI, vol. 13(18), pages 1-13, September.
    2. Nguyen Van Tan & Nguyen Binh Nam & Nguyen Huu Hieu & Le Kim Hung & Minh Quan Duong & Le Hong Lam, 2020. "A Proposal for an MPPT Algorithm Based on the Fluctuations of the PV Output Power, Output Voltage, and Control Duty Cycle for Improving the Performance of PV Systems in Microgrid," Energies, MDPI, vol. 13(17), pages 1-21, August.
    3. Tehzeeb-ul Hassan & Rabeh Abbassi & Houssem Jerbi & Kashif Mehmood & Muhammad Faizan Tahir & Khalid Mehmood Cheema & Rajvikram Madurai Elavarasan & Farman Ali & Irfan Ahmad Khan, 2020. "A Novel Algorithm for MPPT of an Isolated PV System Using Push Pull Converter with Fuzzy Logic Controller," Energies, MDPI, vol. 13(15), pages 1-20, August.
    4. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    5. Mostafa Bakkar & Ahmed Aboelhassan & Mostafa Abdelgeliel & Michael Galea, 2021. "PV Systems Control Using Fuzzy Logic Controller Employing Dynamic Safety Margin under Normal and Partial Shading Conditions," Energies, MDPI, vol. 14(4), pages 1-20, February.
    6. Sameh Mostafa & Abdelhalim Zekry & Ayman Youssef & Wagdi Refaat Anis, 2022. "Raspberry Pi Design and Hardware Implementation of Fuzzy-PI Controller for Three-Phase Grid-Connected Inverter," Energies, MDPI, vol. 15(3), pages 1-22, January.
    7. Javier Solano & Diego Jimenez & Adrian Ilinca, 2020. "A Modular Simulation Testbed for Energy Management in AC/DC Microgrids," Energies, MDPI, vol. 13(16), pages 1-23, August.
    8. Anastasios Dounis, 2019. "Special Issue “Intelligent Control in Energy Systems”," Energies, MDPI, vol. 12(15), pages 1-9, August.
    9. Fateh Mehazzem & Maina André & Rudy Calif, 2022. "Efficient Output Photovoltaic Power Prediction Based on MPPT Fuzzy Logic Technique and Solar Spatio-Temporal Forecasting Approach in a Tropical Insular Region," Energies, MDPI, vol. 15(22), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nabipour, M. & Razaz, M. & Seifossadat, S.GH & Mortazavi, S.S., 2017. "A new MPPT scheme based on a novel fuzzy approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1147-1169.
    2. Rajesh, R. & Carolin Mabel, M., 2015. "A comprehensive review of photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 231-248.
    3. Joshi, Puneet & Arora, Sudha, 2017. "Maximum power point tracking methodologies for solar PV systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1154-1177.
    4. Amjad Ali & K. Almutairi & Muhammad Zeeshan Malik & Kashif Irshad & Vineet Tirth & Salem Algarni & Md. Hasan Zahir & Saiful Islam & Md Shafiullah & Neeraj Kumar Shukla, 2020. "Review of Online and Soft Computing Maximum Power Point Tracking Techniques under Non-Uniform Solar Irradiation Conditions," Energies, MDPI, vol. 13(12), pages 1-37, June.
    5. Mellit, Adel & Kalogirou, Soteris A., 2014. "MPPT-based artificial intelligence techniques for photovoltaic systems and its implementation into field programmable gate array chips: Review of current status and future perspectives," Energy, Elsevier, vol. 70(C), pages 1-21.
    6. Rajesh, R. & Mabel, M. Carolin, 2016. "Design and real time implementation of a novel rule compressed fuzzy logic method for the determination operating point in a photo voltaic system," Energy, Elsevier, vol. 116(P1), pages 140-153.
    7. Chun-Liang Liu & Jing-Hsiao Chen & Yi-Hua Liu & Zong-Zhen Yang, 2014. "An Asymmetrical Fuzzy-Logic-Control-Based MPPT Algorithm for Photovoltaic Systems," Energies, MDPI, vol. 7(4), pages 1-17, April.
    8. Boukenoui, R. & Ghanes, M. & Barbot, J.-P. & Bradai, R. & Mellit, A. & Salhi, H., 2017. "Experimental assessment of Maximum Power Point Tracking methods for photovoltaic systems," Energy, Elsevier, vol. 132(C), pages 324-340.
    9. Kermadi, Mostefa & Berkouk, El Madjid, 2017. "Artificial intelligence-based maximum power point tracking controllers for Photovoltaic systems: Comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 369-386.
    10. Messalti, Sabir & Harrag, Abdelghani & Loukriz, Abdelhamid, 2017. "A new variable step size neural networks MPPT controller: Review, simulation and hardware implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 221-233.
    11. Danandeh, M.A. & Mousavi G., S.M., 2018. "Comparative and comprehensive review of maximum power point tracking methods for PV cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2743-2767.
    12. Datta, Manoj & Senjyu, Tomonobu & Yona, Atsushi & Funabashi, Toshihisa, 2011. "A fuzzy based method for leveling output power fluctuations of photovoltaic-diesel hybrid power system," Renewable Energy, Elsevier, vol. 36(6), pages 1693-1703.
    13. Seyedmahmoudian, M. & Horan, B. & Soon, T. Kok & Rahmani, R. & Than Oo, A. Muang & Mekhilef, S. & Stojcevski, A., 2016. "State of the art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 435-455.
    14. Harrag, Abdelghani & Messalti, Sabir, 2015. "Variable step size modified P&O MPPT algorithm using GA-based hybrid offline/online PID controller," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1247-1260.
    15. Julio López Seguel & Seleme I. Seleme, 2021. "Robust Digital Control Strategy Based on Fuzzy Logic for a Solar Charger of VRLA Batteries," Energies, MDPI, vol. 14(4), pages 1-27, February.
    16. Dounis, Anastasios I. & Kofinas, Panagiotis & Alafodimos, Constantine & Tseles, Dimitrios, 2013. "Adaptive fuzzy gain scheduling PID controller for maximum power point tracking of photovoltaic system," Renewable Energy, Elsevier, vol. 60(C), pages 202-214.
    17. Saravanan, S. & Ramesh Babu, N., 2016. "Maximum power point tracking algorithms for photovoltaic system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 192-204.
    18. Verma, Deepak & Nema, Savita & Shandilya, A.M. & Dash, Soubhagya K., 2016. "Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1018-1034.
    19. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    20. Shuhao Chang & Qiancheng Wang & Haihua Hu & Zijian Ding & Hansen Guo, 2018. "An NNwC MPPT-Based Energy Supply Solution for Sensor Nodes in Buildings and Its Feasibility Study," Energies, MDPI, vol. 12(1), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3263-:d:185039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.