IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v60y2013icp202-214.html
   My bibliography  Save this article

Adaptive fuzzy gain scheduling PID controller for maximum power point tracking of photovoltaic system

Author

Listed:
  • Dounis, Anastasios I.
  • Kofinas, Panagiotis
  • Alafodimos, Constantine
  • Tseles, Dimitrios

Abstract

This paper proposes a methodology of designing a Maximum Power Point Tracking (MPPT) controller for photovoltaic systems (PV) using a Fuzzy Gain Scheduling of Proportional-Integral-Derivative (PID) type controller (FGS-PID) with adaptation of scaling factors (SF) for the input signals of FGS. The proposed adaptive FGS-PID method is based on a two-level control system architecture, which combines the advantages of fuzzy logic and conventional PID control. The initial values of the PID's gains are determined by the Ziegler–Nichols tuning method. During transient and steady states, the PID's gains are adapted by the FGS-PID to damp out the transient oscillations, to reduce settling time and to guarantee system stability and accuracy. Also, the conditioned input signals of the FGS-PID are tuned dynamically by gain factors which are based on fuzzy logic system (FLS). The FLS is characterized by a set of fuzzy rules which are fuzzy conditional statements expressing the relationship between inputs (error and change of error) and outputs. This approach creates an adaptive MPPT controller and achieves better overall system performance. The simulation results demonstrate the effectiveness of the proposed adaptive FGS-PID and show that this approach can achieve a good maximum power operation under any conditions such as different levels of solar radiation and PV cell temperature for varying PV sources. Compared to conventional methods (PID, perturb and observe method P&O), this method shows a considerable high tracking performance.

Suggested Citation

  • Dounis, Anastasios I. & Kofinas, Panagiotis & Alafodimos, Constantine & Tseles, Dimitrios, 2013. "Adaptive fuzzy gain scheduling PID controller for maximum power point tracking of photovoltaic system," Renewable Energy, Elsevier, vol. 60(C), pages 202-214.
  • Handle: RePEc:eee:renene:v:60:y:2013:i:c:p:202-214
    DOI: 10.1016/j.renene.2013.04.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113002309
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.04.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patcharaprakiti, Nopporn & Premrudeepreechacharn, Suttichai & Sriuthaisiriwong, Yosanai, 2005. "Maximum power point tracking using adaptive fuzzy logic control for grid-connected photovoltaic system," Renewable Energy, Elsevier, vol. 30(11), pages 1771-1788.
    2. Larbes, C. & Aït Cheikh, S.M. & Obeidi, T. & Zerguerras, A., 2009. "Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic system," Renewable Energy, Elsevier, vol. 34(10), pages 2093-2100.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khaoula Ghefiri & Aitor J. Garrido & Eugen Rusu & Soufiene Bouallègue & Joseph Haggège & Izaskun Garrido, 2018. "Fuzzy Supervision Based-Pitch Angle Control of a Tidal Stream Generator for a Disturbed Tidal Input," Energies, MDPI, vol. 11(11), pages 1-21, November.
    2. Moayed Almobaied & Hassan S. Al-Nahhal & Orlando Arrieta & Ramon Vilanova, 2023. "Design a Robust Proportional-Derivative Gain-Scheduling Control for a Magnetic Levitation System," Mathematics, MDPI, vol. 11(19), pages 1-21, September.
    3. Ali Bughneda & Mohamed Salem & Anna Richelli & Dahaman Ishak & Salah Alatai, 2021. "Review of Multilevel Inverters for PV Energy System Applications," Energies, MDPI, vol. 14(6), pages 1-23, March.
    4. Kostas Bavarinos & Anastasios Dounis & Panagiotis Kofinas, 2021. "Maximum Power Point Tracking Based on Reinforcement Learning Using Evolutionary Optimization Algorithms," Energies, MDPI, vol. 14(2), pages 1-23, January.
    5. Mellit, Adel & Kalogirou, Soteris A., 2014. "MPPT-based artificial intelligence techniques for photovoltaic systems and its implementation into field programmable gate array chips: Review of current status and future perspectives," Energy, Elsevier, vol. 70(C), pages 1-21.
    6. Boukenoui, R. & Ghanes, M. & Barbot, J.-P. & Bradai, R. & Mellit, A. & Salhi, H., 2017. "Experimental assessment of Maximum Power Point Tracking methods for photovoltaic systems," Energy, Elsevier, vol. 132(C), pages 324-340.
    7. Khaoula Ghefiri & Izaskun Garrido & Soufiene Bouallègue & Joseph Haggège & Aitor J. Garrido, 2018. "Hybrid Neural Fuzzy Design-Based Rotational Speed Control of a Tidal Stream Generator Plant," Sustainability, MDPI, vol. 10(10), pages 1-26, October.
    8. Ying Yang & Bin Wang & Yuqiang Tian & Peng Chen, 2020. "Fractional-Order Finite-Time, Fault-Tolerant Control of Nonlinear Hydraulic-Turbine-Governing Systems with an Actuator Fault," Energies, MDPI, vol. 13(15), pages 1-20, July.
    9. Chun-Liang Liu & Jing-Hsiao Chen & Yi-Hua Liu & Zong-Zhen Yang, 2014. "An Asymmetrical Fuzzy-Logic-Control-Based MPPT Algorithm for Photovoltaic Systems," Energies, MDPI, vol. 7(4), pages 1-17, April.
    10. Obi, Manasseh & Bass, Robert, 2016. "Trends and challenges of grid-connected photovoltaic systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1082-1094.
    11. Strušnik, Dušan & Avsec, Jurij, 2015. "Artificial neural networking and fuzzy logic exergy controlling model of combined heat and power system in thermal power plant," Energy, Elsevier, vol. 80(C), pages 318-330.
    12. Yang, Libing & Entchev, Evgueniy & Ghorab, Mohamed & Lee, Euy-Joon & Kang, Eun-Chul & Kim, Yu-Jin & Nam, Yujin & Bae, Sangmu & Kim, Kwonye, 2022. "Advanced smart trigeneration energy system design for commercial building applications – Energy and cost performance analyses," Energy, Elsevier, vol. 259(C).
    13. Leopoldo Gil-Antonio & Belem Saldivar & Otniel Portillo-Rodríguez & Juan Carlos Ávila-Vilchis & Pánfilo Raymundo Martínez-Rodríguez & Rigoberto Martínez-Méndez, 2019. "Flatness-Based Control for the Maximum Power Point Tracking in a Photovoltaic System," Energies, MDPI, vol. 12(10), pages 1-19, May.
    14. Kofinas, P. & Doltsinis, S. & Dounis, A.I. & Vouros, G.A., 2017. "A reinforcement learning approach for MPPT control method of photovoltaic sources," Renewable Energy, Elsevier, vol. 108(C), pages 461-473.
    15. Verma, Deepak & Nema, Savita & Shandilya, A.M. & Dash, Soubhagya K., 2016. "Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1018-1034.
    16. Khaled Bataineh & Naser Eid, 2018. "A Hybrid Maximum Power Point Tracking Method for Photovoltaic Systems for Dynamic Weather Conditions," Resources, MDPI, vol. 7(4), pages 1-16, November.
    17. Tabanjat, Abdulkader & Becherif, Mohamed & Hissel, Daniel, 2015. "Reconfiguration solution for shaded PV panels using switching control," Renewable Energy, Elsevier, vol. 82(C), pages 4-13.
    18. Hiyam Farhat & Coriolano Salvini, 2022. "Novel Gas Turbine Challenges to Support the Clean Energy Transition," Energies, MDPI, vol. 15(15), pages 1-17, July.
    19. Guerrero-Rodríguez, N.F. & Rey-Boué, Alexis B. & Herrero-de Lucas, Luis C. & Martinez-Rodrigo, Fernando, 2015. "Control and synchronization algorithms for a grid-connected photovoltaic system under harmonic distortions, frequency variations and unbalances," Renewable Energy, Elsevier, vol. 80(C), pages 380-395.
    20. Chettibi, N. & Mellit, A., 2018. "Intelligent control strategy for a grid connected PV/SOFC/BESS energy generation system," Energy, Elsevier, vol. 147(C), pages 239-262.
    21. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    22. Saud Alotaibi & Ahmed Darwish, 2021. "Modular Multilevel Converters for Large-Scale Grid-Connected Photovoltaic Systems: A Review," Energies, MDPI, vol. 14(19), pages 1-30, September.
    23. Wu, Zhenlong & Li, Donghai & Xue, Yali & Chen, YangQuan, 2019. "Gain scheduling design based on active disturbance rejection control for thermal power plant under full operating conditions," Energy, Elsevier, vol. 185(C), pages 744-762.
    24. Rajesh, R. & Carolin Mabel, M., 2015. "A comprehensive review of photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 231-248.
    25. Kermadi, Mostefa & Berkouk, El Madjid, 2017. "Artificial intelligence-based maximum power point tracking controllers for Photovoltaic systems: Comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 369-386.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajesh, R. & Mabel, M. Carolin, 2016. "Design and real time implementation of a novel rule compressed fuzzy logic method for the determination operating point in a photo voltaic system," Energy, Elsevier, vol. 116(P1), pages 140-153.
    2. Rajesh, R. & Carolin Mabel, M., 2015. "A comprehensive review of photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 231-248.
    3. Joshi, Puneet & Arora, Sudha, 2017. "Maximum power point tracking methodologies for solar PV systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1154-1177.
    4. Datta, Manoj & Senjyu, Tomonobu & Yona, Atsushi & Funabashi, Toshihisa, 2011. "A fuzzy based method for leveling output power fluctuations of photovoltaic-diesel hybrid power system," Renewable Energy, Elsevier, vol. 36(6), pages 1693-1703.
    5. Mellit, Adel & Kalogirou, Soteris A., 2014. "MPPT-based artificial intelligence techniques for photovoltaic systems and its implementation into field programmable gate array chips: Review of current status and future perspectives," Energy, Elsevier, vol. 70(C), pages 1-21.
    6. Gul Filiz Tchoketch Kebir & Cherif Larbes & Adrian Ilinca & Thameur Obeidi & Selma Tchoketch Kebir, 2018. "Study of the Intelligent Behavior of a Maximum Photovoltaic Energy Tracking Fuzzy Controller," Energies, MDPI, vol. 11(12), pages 1-20, November.
    7. Amjad Ali & K. Almutairi & Muhammad Zeeshan Malik & Kashif Irshad & Vineet Tirth & Salem Algarni & Md. Hasan Zahir & Saiful Islam & Md Shafiullah & Neeraj Kumar Shukla, 2020. "Review of Online and Soft Computing Maximum Power Point Tracking Techniques under Non-Uniform Solar Irradiation Conditions," Energies, MDPI, vol. 13(12), pages 1-37, June.
    8. Shuhao Chang & Qiancheng Wang & Haihua Hu & Zijian Ding & Hansen Guo, 2018. "An NNwC MPPT-Based Energy Supply Solution for Sensor Nodes in Buildings and Its Feasibility Study," Energies, MDPI, vol. 12(1), pages 1-20, December.
    9. Celikel, Resat & Yilmaz, Musa & Gundogdu, Ahmet, 2022. "A voltage scanning-based MPPT method for PV power systems under complex partial shading conditions," Renewable Energy, Elsevier, vol. 184(C), pages 361-373.
    10. Peng Zhang & Huibin Sui, 2020. "Maximum Power Point Tracking Technology of Photovoltaic Array under Partial Shading Based On Adaptive Improved Differential Evolution Algorithm," Energies, MDPI, vol. 13(5), pages 1-15, March.
    11. Yi Jin & Wenhui Hou & Guiqiang Li & Xiao Chen, 2017. "A Glowworm Swarm Optimization-Based Maximum Power Point Tracking for Photovoltaic/Thermal Systems under Non-Uniform Solar Irradiation and Temperature Distribution," Energies, MDPI, vol. 10(4), pages 1-13, April.
    12. Touqeer Ahmed Jumani & Mohd Wazir Mustafa & Nawaf N. Hamadneh & Samer H. Atawneh & Madihah Md. Rasid & Nayyar Hussain Mirjat & Muhammad Akram Bhayo & Ilyas Khan, 2020. "Computational Intelligence-Based Optimization Methods for Power Quality and Dynamic Response Enhancement of ac Microgrids," Energies, MDPI, vol. 13(16), pages 1-22, August.
    13. Belhachat, Faiza & Larbes, Cherif, 2017. "Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 875-889.
    14. Daraban, Stefan & Petreus, Dorin & Morel, Cristina, 2014. "A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading," Energy, Elsevier, vol. 74(C), pages 374-388.
    15. Boukenoui, R. & Ghanes, M. & Barbot, J.-P. & Bradai, R. & Mellit, A. & Salhi, H., 2017. "Experimental assessment of Maximum Power Point Tracking methods for photovoltaic systems," Energy, Elsevier, vol. 132(C), pages 324-340.
    16. Po-Chen Cheng & Bo-Rei Peng & Yi-Hua Liu & Yu-Shan Cheng & Jia-Wei Huang, 2015. "Optimization of a Fuzzy-Logic-Control-Based MPPT Algorithm Using the Particle Swarm Optimization Technique," Energies, MDPI, vol. 8(6), pages 1-23, June.
    17. Kumari, P. Ashwini & Geethanjali, P., 2018. "Parameter estimation for photovoltaic system under normal and partial shading conditions: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 1-11.
    18. Messalti, Sabir & Harrag, Abdelghani & Loukriz, Abdelhamid, 2017. "A new variable step size neural networks MPPT controller: Review, simulation and hardware implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 221-233.
    19. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    20. Danandeh, M.A. & Mousavi G., S.M., 2018. "Comparative and comprehensive review of maximum power point tracking methods for PV cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2743-2767.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:60:y:2013:i:c:p:202-214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.