IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p841-d494153.html
   My bibliography  Save this article

PV Systems Control Using Fuzzy Logic Controller Employing Dynamic Safety Margin under Normal and Partial Shading Conditions

Author

Listed:
  • Mostafa Bakkar

    (Department of Electrical Engineering, The School of Industrial, Aerospace and Audiovisual Engineering of Terrassa (ESEIAAT), Polytechnic University of Catalonia, 08222 Barcelona, Spain)

  • Ahmed Aboelhassan

    (Electrical and Control Engineering Department, College of Engineering & Technology, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Alexandria 1029, Egypt
    Key Laboratory of More Electric Aircraft Technology of Zhejiang Province, University of Nottingham, Ningbo 315100, China)

  • Mostafa Abdelgeliel

    (Electrical and Control Engineering Department, College of Engineering & Technology, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Alexandria 1029, Egypt)

  • Michael Galea

    (Key Laboratory of More Electric Aircraft Technology of Zhejiang Province, University of Nottingham, Ningbo 315100, China)

Abstract

Because of the unpredictable activity of solar energy sources, photovoltaic (PV) maximum power point tracking (MPPT) is essential to guarantee the continuous operation of electrical energy generation at optimal power levels. Several works have extensively examined the generation of the maximum power from the PV systems under normal and shading conditions. The fuzzy logic control (FLC) method is one of the effective MPPT techniques, but it needs to be adapted to work in partial shading conditions. The current paper presents the FLC-based on dynamic safety margin (DSM) as an MPPT technique for a PV system to overcome the limitations of FLC in shading conditions. The DSM is a performance index that measures the system state deviation from the normal situation. As a performance index, DSM is used to adapt the FLC controller output to rapidly reach the global maxima of the PV system. The ability of the proposed algorithm and its performance are evaluated using simulation and practical implementation results for single phase grid-connected PV system under normal and partial shading operating conditions.

Suggested Citation

  • Mostafa Bakkar & Ahmed Aboelhassan & Mostafa Abdelgeliel & Michael Galea, 2021. "PV Systems Control Using Fuzzy Logic Controller Employing Dynamic Safety Margin under Normal and Partial Shading Conditions," Energies, MDPI, vol. 14(4), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:841-:d:494153
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/841/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/841/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gul Filiz Tchoketch Kebir & Cherif Larbes & Adrian Ilinca & Thameur Obeidi & Selma Tchoketch Kebir, 2018. "Study of the Intelligent Behavior of a Maximum Photovoltaic Energy Tracking Fuzzy Controller," Energies, MDPI, vol. 11(12), pages 1-20, November.
    2. Jirada Gosumbonggot & Goro Fujita, 2019. "Partial Shading Detection and Global Maximum Power Point Tracking Algorithm for Photovoltaic with the Variation of Irradiation and Temperature," Energies, MDPI, vol. 12(2), pages 1-22, January.
    3. Cristian Pesce & Javier Riedemann & Ruben Pena & Werner Jara & Camilo Maury & Rodrigo Villalobos, 2019. "A Modified Step-Up DC-DC Flyback Converter with Active Snubber for Improved Efficiency," Energies, MDPI, vol. 12(11), pages 1-17, May.
    4. Mohapatra, Alivarani & Nayak, Byamakesh & Das, Priti & Mohanty, Kanungo Barada, 2017. "A review on MPPT techniques of PV system under partial shading condition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 854-867.
    5. Pal, Rudra Sankar & Mukherjee, V., 2020. "Metaheuristic based comparative MPPT methods for photovoltaic technology under partial shading condition," Energy, Elsevier, vol. 212(C).
    6. Mehdi Seyedmahmoudian & Tey Kok Soon & Elmira Jamei & Gokul Sidarth Thirunavukkarasu & Ben Horan & Saad Mekhilef & Alex Stojcevski, 2018. "Maximum Power Point Tracking for Photovoltaic Systems under Partial Shading Conditions Using Bat Algorithm," Sustainability, MDPI, vol. 10(5), pages 1-16, April.
    7. Mohammadmehdi Seyedmahmoudian & Saad Mekhilef & Rasoul Rahmani & Rubiyah Yusof & Ehsan Taslimi Renani, 2013. "Analytical Modeling of Partially Shaded Photovoltaic Systems," Energies, MDPI, vol. 6(1), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    2. Amit Kumar Sharma & Rupendra Kumar Pachauri & Sushabhan Choudhury & Ahmad Faiz Minai & Majed A. Alotaibi & Hasmat Malik & Fausto Pedro García Márquez, 2023. "Role of Metaheuristic Approaches for Implementation of Integrated MPPT-PV Systems: A Comprehensive Study," Mathematics, MDPI, vol. 11(2), pages 1-48, January.
    3. Zahra Bel Hadj Salah & Saber Krim & Mohamed Ali Hajjaji & Badr M. Alshammari & Khalid Alqunun & Ahmed Alzamil & Tawfik Guesmi, 2023. "A New Efficient Cuckoo Search MPPT Algorithm Based on a Super-Twisting Sliding Mode Controller for Partially Shaded Standalone Photovoltaic System," Sustainability, MDPI, vol. 15(12), pages 1-38, June.
    4. Sameh Mostafa & Abdelhalim Zekry & Ayman Youssef & Wagdi Refaat Anis, 2022. "Raspberry Pi Design and Hardware Implementation of Fuzzy-PI Controller for Three-Phase Grid-Connected Inverter," Energies, MDPI, vol. 15(3), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khaled Osmani & Ahmad Haddad & Mohammad Alkhedher & Thierry Lemenand & Bruno Castanier & Mohamad Ramadan, 2023. "A Novel MPPT-Based Lithium-Ion Battery Solar Charger for Operation under Fluctuating Irradiance Conditions," Sustainability, MDPI, vol. 15(12), pages 1-31, June.
    2. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    3. Nihat Pamuk, 2023. "Performance Analysis of Different Optimization Algorithms for MPPT Control Techniques under Complex Partial Shading Conditions in PV Systems," Energies, MDPI, vol. 16(8), pages 1-25, April.
    4. Manoharan Premkumar & Umashankar Subramaniam & Thanikanti Sudhakar Babu & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2020. "Evaluation of Mathematical Model to Characterize the Performance of Conventional and Hybrid PV Array Topologies under Static and Dynamic Shading Patterns," Energies, MDPI, vol. 13(12), pages 1-37, June.
    5. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    6. Md Jahidur Rahman & Tahar Tafticht & Mamadou Lamine Doumbia & Iqbal Messaïf, 2023. "Optimal Inverter Control Strategies for a PV Power Generation with Battery Storage System in Microgrid," Energies, MDPI, vol. 16(10), pages 1-36, May.
    7. Camilo, Jones C. & Guedes, Tatiana & Fernandes, Darlan A. & Melo, J.D. & Costa, F.F. & Sguarezi Filho, Alfeu J., 2019. "A maximum power point tracking for photovoltaic systems based on Monod equation," Renewable Energy, Elsevier, vol. 130(C), pages 428-438.
    8. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    9. Waleed Al Abri & Rashid Al Abri & Hassan Yousef & Amer Al-Hinai, 2021. "A Simple Method for Detecting Partial Shading in PV Systems," Energies, MDPI, vol. 14(16), pages 1-12, August.
    10. Weng-Hooi Tan & Junita Mohamad-Saleh, 2023. "Critical Review on Interrelationship of Electro-Devices in PV Solar Systems with Their Evolution and Future Prospects for MPPT Applications," Energies, MDPI, vol. 16(2), pages 1-37, January.
    11. Celikel, Resat & Yilmaz, Musa & Gundogdu, Ahmet, 2022. "A voltage scanning-based MPPT method for PV power systems under complex partial shading conditions," Renewable Energy, Elsevier, vol. 184(C), pages 361-373.
    12. Peng Zhang & Huibin Sui, 2020. "Maximum Power Point Tracking Technology of Photovoltaic Array under Partial Shading Based On Adaptive Improved Differential Evolution Algorithm," Energies, MDPI, vol. 13(5), pages 1-15, March.
    13. Wang, Jian-jun & Deng, Yu-cong & Sun, Wen-biao & Zheng, Xiao-bin & Cui, Zheng, 2023. "Maximum power point tracking method based on impedance matching for a micro hydropower generator," Applied Energy, Elsevier, vol. 340(C).
    14. Ahmed Hussain Elmetwaly & Ramy Adel Younis & Abdelazeem Abdallah Abdelsalam & Ahmed Ibrahim Omar & Mohamed Metwally Mahmoud & Faisal Alsaif & Adel El-Shahat & Mohamed Attya Saad, 2023. "Modeling, Simulation, and Experimental Validation of a Novel MPPT for Hybrid Renewable Sources Integrated with UPQC: An Application of Jellyfish Search Optimizer," Sustainability, MDPI, vol. 15(6), pages 1-30, March.
    15. Hossam Hassan Ammar & Ahmad Taher Azar & Raafat Shalaby & M. I. Mahmoud, 2019. "Metaheuristic Optimization of Fractional Order Incremental Conductance (FO-INC) Maximum Power Point Tracking (MPPT)," Complexity, Hindawi, vol. 2019, pages 1-13, November.
    16. Andrea Bonfiglio & Massimo Brignone & Marco Invernizzi & Alessandro Labella & Daniele Mestriner & Renato Procopio, 2017. "A Simplified Microgrid Model for the Validation of Islanded Control Logics," Energies, MDPI, vol. 10(8), pages 1-28, August.
    17. Sameh Mostafa & Abdelhalim Zekry & Ayman Youssef & Wagdi Refaat Anis, 2022. "Raspberry Pi Design and Hardware Implementation of Fuzzy-PI Controller for Three-Phase Grid-Connected Inverter," Energies, MDPI, vol. 15(3), pages 1-22, January.
    18. Tang, Ruoli & Li, Xin & Lai, Jingang, 2018. "A novel optimal energy-management strategy for a maritime hybrid energy system based on large-scale global optimization," Applied Energy, Elsevier, vol. 228(C), pages 254-264.
    19. Azaioud, Hakim & Farnam, Arash & Knockaert, Jos & Vandevelde, Lieven & Desmet, Jan, 2024. "Efficiency optimisation and converterless PV integration by applying a dynamic voltage on an LVDC backbone," Applied Energy, Elsevier, vol. 356(C).
    20. Abdulhamid Atia & Fatih Anayi & Min Gao, 2022. "Influence of Shading on Solar Cell Parameters and Modelling Accuracy Improvement of PV Modules with Reverse Biased Solar Cells," Energies, MDPI, vol. 15(23), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:841-:d:494153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.