IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v30y2005i11p1771-1788.html
   My bibliography  Save this article

Maximum power point tracking using adaptive fuzzy logic control for grid-connected photovoltaic system

Author

Listed:
  • Patcharaprakiti, Nopporn
  • Premrudeepreechacharn, Suttichai
  • Sriuthaisiriwong, Yosanai

Abstract

This paper proposes a method of maximum power point tracking using adaptive fuzzy logic control for grid-connected photovoltaic systems. The system is composed of a boost converter and a single-phase inverter connected to a utility grid. The maximum power point tracking control is based on adaptive fuzzy logic to control a switch of a boost converter. Adaptive fuzzy logic controllers provide attractive features such as fast response, good performance. In addition, adaptive fuzzy logic controllers can also change the fuzzy parameter for improving the control system. The single phase inverter uses predictive current control which provides current with sinusoidal waveform. Therefore, the system is able to deliver energy with low harmonics and high power factor. Both conventional fuzzy logic controller and adaptive fuzzy logic controller are simulated and implemented to evaluate performance. Simulation and experimental results are provided for both controllers under the same atmospheric condition. From the simulation and experimental results, the adaptive fuzzy logic controller can deliver more power than the conventional fuzzy logic controller.

Suggested Citation

  • Patcharaprakiti, Nopporn & Premrudeepreechacharn, Suttichai & Sriuthaisiriwong, Yosanai, 2005. "Maximum power point tracking using adaptive fuzzy logic control for grid-connected photovoltaic system," Renewable Energy, Elsevier, vol. 30(11), pages 1771-1788.
  • Handle: RePEc:eee:renene:v:30:y:2005:i:11:p:1771-1788
    DOI: 10.1016/j.renene.2004.11.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014810400463X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2004.11.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajesh, R. & Mabel, M. Carolin, 2016. "Design and real time implementation of a novel rule compressed fuzzy logic method for the determination operating point in a photo voltaic system," Energy, Elsevier, vol. 116(P1), pages 140-153.
    2. Shuhao Chang & Qiancheng Wang & Haihua Hu & Zijian Ding & Hansen Guo, 2018. "An NNwC MPPT-Based Energy Supply Solution for Sensor Nodes in Buildings and Its Feasibility Study," Energies, MDPI, vol. 12(1), pages 1-20, December.
    3. Joshi, Puneet & Arora, Sudha, 2017. "Maximum power point tracking methodologies for solar PV systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1154-1177.
    4. Mellit, Adel & Kalogirou, Soteris A., 2014. "MPPT-based artificial intelligence techniques for photovoltaic systems and its implementation into field programmable gate array chips: Review of current status and future perspectives," Energy, Elsevier, vol. 70(C), pages 1-21.
    5. Datta, Manoj & Senjyu, Tomonobu & Yona, Atsushi & Funabashi, Toshihisa, 2011. "A fuzzy based method for leveling output power fluctuations of photovoltaic-diesel hybrid power system," Renewable Energy, Elsevier, vol. 36(6), pages 1693-1703.
    6. Gul Filiz Tchoketch Kebir & Cherif Larbes & Adrian Ilinca & Thameur Obeidi & Selma Tchoketch Kebir, 2018. "Study of the Intelligent Behavior of a Maximum Photovoltaic Energy Tracking Fuzzy Controller," Energies, MDPI, vol. 11(12), pages 1-20, November.
    7. Touqeer Ahmed Jumani & Mohd Wazir Mustafa & Nawaf N. Hamadneh & Samer H. Atawneh & Madihah Md. Rasid & Nayyar Hussain Mirjat & Muhammad Akram Bhayo & Ilyas Khan, 2020. "Computational Intelligence-Based Optimization Methods for Power Quality and Dynamic Response Enhancement of ac Microgrids," Energies, MDPI, vol. 13(16), pages 1-22, August.
    8. Alexandro Ortiz & Efrain Mendez & Israel Macias & Arturo Molina, 2022. "Earthquake Algorithm-Based Voltage Referenced MPPT Implementation through a Standardized Validation Frame," Energies, MDPI, vol. 15(23), pages 1-24, November.
    9. Kofinas, P. & Doltsinis, S. & Dounis, A.I. & Vouros, G.A., 2017. "A reinforcement learning approach for MPPT control method of photovoltaic sources," Renewable Energy, Elsevier, vol. 108(C), pages 461-473.
    10. Verma, Deepak & Nema, Savita & Shandilya, A.M. & Dash, Soubhagya K., 2016. "Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1018-1034.
    11. Farahat, M.A. & Metwally, H.M.B. & Abd-Elfatah Mohamed, Ahmed, 2012. "Optimal choice and design of different topologies of DC–DC converter used in PV systems, at different climatic conditions in Egypt," Renewable Energy, Elsevier, vol. 43(C), pages 393-402.
    12. Amjad Ali & K. Almutairi & Muhammad Zeeshan Malik & Kashif Irshad & Vineet Tirth & Salem Algarni & Md. Hasan Zahir & Saiful Islam & Md Shafiullah & Neeraj Kumar Shukla, 2020. "Review of Online and Soft Computing Maximum Power Point Tracking Techniques under Non-Uniform Solar Irradiation Conditions," Energies, MDPI, vol. 13(12), pages 1-37, June.
    13. Rajesh, R. & Carolin Mabel, M., 2015. "A comprehensive review of photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 231-248.
    14. Dounis, Anastasios I. & Kofinas, Panagiotis & Alafodimos, Constantine & Tseles, Dimitrios, 2013. "Adaptive fuzzy gain scheduling PID controller for maximum power point tracking of photovoltaic system," Renewable Energy, Elsevier, vol. 60(C), pages 202-214.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:30:y:2005:i:11:p:1771-1788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.