IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3233-d184498.html
   My bibliography  Save this article

Waste to Carbon: Densification of Torrefied Refuse-Derived Fuel

Author

Listed:
  • Andrzej Białowiec

    (Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland)

  • Monika Micuda

    (Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland)

  • Jacek A. Koziel

    (Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA)

Abstract

In this work, for the first time, the feasibility of obtaining carbonized refuse-derived fuel (CRDF) pelletization from municipal solid waste (MSW) was shown. Production of CRDF by torrefaction of MSW could be the future of recycling technology. The objective was to determine the applied pressure needed to produce CRDF pellets with compressive strength (CS) comparable to conventional biomass pellets. Also, the hypothesis that a binder (water glass (WG)) applied to CRDF as a coating can improve CS was tested. The pelletizing was based on the lab-scale production of CRDF pellets with pressure ranging from 8.5 MPa to 76.2 MPa. The resulting CS pellets increased from 0.06 MPa to 3.44 MPa with applied pelletizing pressure up to the threshold of 50.8 MPa, above which it did not significantly improve ( p < 0.05). It was found that the addition of 10% WG to 50.8 MPa CRDF pellets or coating them with WG did not significantly improve the CS ( p < 0.05). It was possible to produce durable pellets from CRDF. The CS was comparable to pine pellets. This research advances the concept of energy recovery from MSW, particularly by providing practical information on densification of CRDF originating from the torrefaction of the flammable fraction of MSW–refuse-derived fuel. Modification of CRDF through pelletization is proposed as preparation of lower volume fuel with projected lower costs of its storage and transportation and for a wider adoption of this technology.

Suggested Citation

  • Andrzej Białowiec & Monika Micuda & Jacek A. Koziel, 2018. "Waste to Carbon: Densification of Torrefied Refuse-Derived Fuel," Energies, MDPI, vol. 11(11), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3233-:d:184498
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3233/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3233/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahn, Byoung Jun & Chang, Hee-sun & Lee, Soo Min & Choi, Don Ha & Cho, Seong Taek & Han, Gyu-seong & Yang, In, 2014. "Effect of binders on the durability of wood pellets fabricated from Larix kaemferi C. and Liriodendron tulipifera L. sawdust," Renewable Energy, Elsevier, vol. 62(C), pages 18-23.
    2. Lorena De Medina-Salas & Eduardo Castillo-González & Mario Rafael Giraldi-Díaz & Víctor Guzmán-González, 2017. "Analysis of Economical and Environmental Costs for the Selection of Municipal Solid Waste Treatment and Disposal Scenarios through Multicriteria Analysis (ELECTRE Method)," Sustainability, MDPI, vol. 9(11), pages 1-8, October.
    3. Johanna Gaitán-Alvarez & Roger Moya & Allen Puente-Urbina & Ana Rodriguez-Zuñiga, 2017. "Physical and Compression Properties of Pellets Manufactured with the Biomass of Five Woody Tropical Species of Costa Rica Torrefied at Different Temperatures and Times," Energies, MDPI, vol. 10(8), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacek Łyczko & Jacek A. Koziel & Chumki Banik & Andrzej Białowiec, 2021. "The Proof-of-Concept: The Transformation of Naphthalene and Its Derivatives into Decalin and Its Derivatives during Thermochemical Processing of Sewage Sludge," Energies, MDPI, vol. 14(20), pages 1-11, October.
    2. Mukherjee, C. & Denney, J. & Mbonimpa, E.G. & Slagley, J. & Bhowmik, R., 2020. "A review on municipal solid waste-to-energy trends in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Gyeong-Min Kim & Dae-Gyun Lee & Chung-Hwan Jeon, 2019. "Fundamental Characteristics and Kinetic Analysis of Lignocellulosic Woody and Herbaceous Biomass Fuels," Energies, MDPI, vol. 12(6), pages 1-16, March.
    4. Min-Hao Yuan & Chia-Chi Chang & Tsung-Chi Hsu & Je-Lueng Shie & Yi-Hung Chen & Ching-Yuan Chang & Cheng-Fang Lin & Chang-Ping Yu & Chao-Hsiung Wu & Manh Van Do & Far-Ching Lin & Duu-Jong Lee & Bo-Lian, 2021. "A Technical Analysis of Solid Recovered Fuel from Torrefied Jatropha Seed Residue via a Two-Stage Mechanical Screw Press and Solvent Extraction Process," Energies, MDPI, vol. 14(23), pages 1-13, November.
    5. Marcin Jewiarz & Krzysztof Mudryk & Marek Wróbel & Jarosław Frączek & Krzysztof Dziedzic, 2020. "Parameters Affecting RDF-Based Pellet Quality," Energies, MDPI, vol. 13(4), pages 1-17, February.
    6. Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.
    7. Marta Dudek & Kacper Świechowski & Piotr Manczarski & Jacek A. Koziel & Andrzej Białowiec, 2019. "The Effect of Biochar Addition on the Biogas Production Kinetics from the Anaerobic Digestion of Brewers’ Spent Grain," Energies, MDPI, vol. 12(8), pages 1-22, April.
    8. Andrzej Białowiec & Monika Micuda & Antoni Szumny & Jacek Łyczko & Jacek A. Koziel, 2019. "Waste to Carbon: Influence of Structural Modification on VOC Emission Kinetics from Stored Carbonized Refuse-Derived Fuel," Sustainability, MDPI, vol. 11(3), pages 1-13, February.
    9. Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
    10. Andrzej Białowiec & Jacek A. Koziel & Piotr Manczarski, 2019. "Stomatal Conductance Measurement for Toxicity Assessment in Zero-Effluent Constructed Wetlands: Effects of Landfill Leachate on Hydrophytes," IJERPH, MDPI, vol. 16(3), pages 1-7, February.
    11. Kacper Świechowski & Martyna Hnat & Paweł Stępień & Sylwia Stegenta-Dąbrowska & Szymon Kugler & Jacek A. Koziel & Andrzej Białowiec, 2020. "Waste to Energy: Solid Fuel Production from Biogas Plant Digestate and Sewage Sludge by Torrefaction-Process Kinetics, Fuel Properties, and Energy Balance," Energies, MDPI, vol. 13(12), pages 1-37, June.
    12. Bartosz Matyjewicz & Kacper Świechowski & Jacek A. Koziel & Andrzej Białowiec, 2020. "Proof-of-Concept of High-Pressure Torrefaction for Improvement of Pelletized Biomass Fuel Properties and Process Cost Reduction," Energies, MDPI, vol. 13(18), pages 1-27, September.
    13. Jakub Pulka & Piotr Manczarski & Jacek A. Koziel & Andrzej Białowiec, 2019. "Torrefaction of Sewage Sludge: Kinetics and Fuel Properties of Biochars," Energies, MDPI, vol. 12(3), pages 1-10, February.
    14. Paweł Stępień & Małgorzata Serowik & Jacek A. Koziel & Andrzej Białowiec, 2019. "Waste to Carbon Energy Demand Model and Data Based on the TGA and DSC Analysis of Individual MSW Components," Data, MDPI, vol. 4(2), pages 1-6, April.
    15. Ewa Syguła & Jacek A. Koziel & Andrzej Białowiec, 2019. "Proof-of-Concept of Spent Mushrooms Compost Torrefaction—Studying the Process Kinetics and the Influence of Temperature and Duration on the Calorific Value of the Produced Biocoal," Energies, MDPI, vol. 12(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodolfo Picchio & Francesco Latterini & Rachele Venanzi & Walter Stefanoni & Alessandro Suardi & Damiano Tocci & Luigi Pari, 2020. "Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.
    2. Sui, Haiqing & Chen, Jianfeng & Cheng, Wei & Zhu, Youjian & Zhang, Wennan & Hu, Junhao & Jiang, Hao & Shao, Jing'ai & Chen, Hanping, 2024. "Effect of oxidative torrefaction on fuel and pelletizing properties of agricultural biomass in comparison with non-oxidative torrefaction," Renewable Energy, Elsevier, vol. 226(C).
    3. Arkadiusz Dyjakon & Tomasz Noszczyk, 2019. "The Influence of Freezing Temperature Storage on the Mechanical Durability of Commercial Pellets from Biomass," Energies, MDPI, vol. 12(13), pages 1-13, July.
    4. Xuyang Cui & Junhong Yang & Xinyu Shi & Wanning Lei & Tao Huang & Chao Bai, 2019. "Experimental Investigation on the Energy Consumption, Physical, and Thermal Properties of a Novel Pellet Fuel Made from Wood Residues with Microalgae as a Binder," Energies, MDPI, vol. 12(18), pages 1-26, September.
    5. Xuexian Qin & Robert F. Keefe & Daren E. Daugaard, 2018. "Small Landowner Production of Pellets from Green, Beetle-Killed, and Burned Lodgepole Pine," Energies, MDPI, vol. 11(3), pages 1-14, March.
    6. Poritosh Roy & Animesh Dutta & Jim Gallant, 2018. "Hydrothermal Carbonization of Peat Moss and Herbaceous Biomass (Miscanthus): A Potential Route for Bioenergy," Energies, MDPI, vol. 11(10), pages 1-14, October.
    7. Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
    8. Pingtao Yi & Weiwei Li & Lingyu Li, 2018. "Evaluation and Prediction of City Sustainability Using MCDM and Stochastic Simulation Methods," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    9. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    10. HamidReza Jahangirzadeh & Mehdi Ghanbarzadeh Lak, 2021. "Developing a Decision-making Model to Enhance Artificial Aquifer Recharge Site Selection Through Floodwater Spreading Based on GIS and ELECTRE I," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5169-5186, December.
    11. Kuo-Ting Wang & Chengyan Jing & Christopher Wood & Aditi Nagardeolekar & Neil Kohan & Prajakta Dongre & Thomas E. Amidon & Biljana M. Bujanovic, 2017. "Toward Complete Utilization of Miscanthus in a Hot-Water Extraction-Based Biorefinery," Energies, MDPI, vol. 11(1), pages 1-22, December.
    12. Marco Manzone & Fabrizio Gioelli & Paolo Balsari, 2017. "Kiwi Clear‐Cut: First Evaluation of Recovered Biomass for Energy Production," Energies, MDPI, vol. 10(11), pages 1-12, November.
    13. Azargohar, Ramin & Nanda, Sonil & Kang, Kang & Bond, Toby & Karunakaran, Chithra & Dalai, Ajay K. & Kozinski, Janusz A., 2019. "Effects of bio-additives on the physicochemical properties and mechanical behavior of canola hull fuel pellets," Renewable Energy, Elsevier, vol. 132(C), pages 296-307.
    14. Anukam, Anthony & Berghel, Jonas & Henrikson, Gunnar & Frodeson, Stefan & Ståhl, Magnus, 2021. "A review of the mechanism of bonding in densified biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    15. Whittaker, Carly & Shield, Ian, 2017. "Factors affecting wood, energy grass and straw pellet durability – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 1-11.
    16. Emmanuel Blancarte-Contreras & Sacramento Corral-Rivas & Tilo Gustavo Domínguez-Gómez & José Encarnación Lujan-Soto & José Rodolfo Goche-Télles & Eusebio Montiel-Antuna, 2022. "Improving the Physical, Mechanical and Energetic Characteristics of Pine Sawdust by the Addition of up to 40% Agave durangensis Gentry Pellets," Energies, MDPI, vol. 15(10), pages 1-12, May.
    17. Javad Torkashvand & Mohammad Mahdi Emamjomeh & Mitra Gholami & Mahdi Farzadkia, 2021. "Analysis of cost–benefit in life-cycle of plastic solid waste: combining waste flow analysis and life cycle cost as a decision support tool to the selection of optimum scenario," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13242-13260, September.
    18. Andrzej Kuranc & Monika Stoma & Leszek Rydzak & Monika Pilipiuk, 2020. "Durability Assessment of Wooden Pellets in Relation with Vibrations Occurring in a Logistic Process of the Final Product," Energies, MDPI, vol. 13(22), pages 1-15, November.
    19. Obidziński, Sławomir & Piekut, Jolanta & Dec, Dorota, 2016. "The influence of potato pulp content on the properties of pellets from buckwheat hulls," Renewable Energy, Elsevier, vol. 87(P1), pages 289-297.
    20. Kang, Kang & Zhu, Mingqiang & Sun, Guotao & Qiu, Ling & Guo, Xiaohui & Meda, Venkatesh & Sun, Runcang, 2018. "Codensification of Eucommia ulmoides Oliver stem with pyrolysis oil and char for solid biofuel: An optimization and characterization study," Applied Energy, Elsevier, vol. 223(C), pages 347-357.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3233-:d:184498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.