IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6479-d652970.html
   My bibliography  Save this article

The Proof-of-Concept: The Transformation of Naphthalene and Its Derivatives into Decalin and Its Derivatives during Thermochemical Processing of Sewage Sludge

Author

Listed:
  • Jacek Łyczko

    (Department of Chemistry, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland)

  • Jacek A. Koziel

    (Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA)

  • Chumki Banik

    (Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA)

  • Andrzej Białowiec

    (Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA
    Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland)

Abstract

One solution for sewage sludge (SS) management is thermochemical treatment due to torrefaction and pyrolysis with biochar production. SS biochar may contain toxic volatile organic compounds (VOCs) and polyaromatic hydrocarbons (PAHs). This study aimed to determine the process temperature’s influence on the qualitative PAHs emission from SS-biochar and the transformation of PAHs contained in SS. SS was torrefied/pyrolyzed under temperatures 200–600 °C with 1 h residence time. The headspace solid-phase microextraction (SPME) combined with gas chromatography and mass spectrometry (HS-SPME-GC-MS) analytical procedure of VOCs and PAHs emission was applied. The highest abundance of numerous VOCs was found for torrefaction ranges of temperature. The increase of temperatures to the pyrolytic range decreased the presence of VOCs and PAHs in biochar. The most common VOCs emitted from thermally processed SS were acetone, 2-methylfuran, 2-butanone, 3-metylbutanal, benzene, decalin, and acetic acid. The naphthalene present in SS converted to decalin (and other decalin derivatives), which may lead to SS biochar being considered hazardous material.

Suggested Citation

  • Jacek Łyczko & Jacek A. Koziel & Chumki Banik & Andrzej Białowiec, 2021. "The Proof-of-Concept: The Transformation of Naphthalene and Its Derivatives into Decalin and Its Derivatives during Thermochemical Processing of Sewage Sludge," Energies, MDPI, vol. 14(20), pages 1-11, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6479-:d:652970
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6479/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6479/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jakub Pulka & Piotr Manczarski & Jacek A. Koziel & Andrzej Białowiec, 2019. "Torrefaction of Sewage Sludge: Kinetics and Fuel Properties of Biochars," Energies, MDPI, vol. 12(3), pages 1-10, February.
    2. Andrzej Białowiec & Monika Micuda & Antoni Szumny & Jacek Łyczko & Jacek A. Koziel, 2019. "Waste to Carbon: Influence of Structural Modification on VOC Emission Kinetics from Stored Carbonized Refuse-Derived Fuel," Sustainability, MDPI, vol. 11(3), pages 1-13, February.
    3. Andrzej Białowiec & Monika Micuda & Jacek A. Koziel, 2018. "Waste to Carbon: Densification of Torrefied Refuse-Derived Fuel," Energies, MDPI, vol. 11(11), pages 1-20, November.
    4. Daniel Meyer-Kohlstock & Thomas Haupt & Erik Heldt & Nils Heldt & Eckhard Kraft, 2016. "Biochar as Additive in Biogas-Production from Bio-Waste," Energies, MDPI, vol. 9(4), pages 1-10, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kacper Świechowski & Martyna Hnat & Paweł Stępień & Sylwia Stegenta-Dąbrowska & Szymon Kugler & Jacek A. Koziel & Andrzej Białowiec, 2020. "Waste to Energy: Solid Fuel Production from Biogas Plant Digestate and Sewage Sludge by Torrefaction-Process Kinetics, Fuel Properties, and Energy Balance," Energies, MDPI, vol. 13(12), pages 1-37, June.
    2. Marta Dudek & Kacper Świechowski & Piotr Manczarski & Jacek A. Koziel & Andrzej Białowiec, 2019. "The Effect of Biochar Addition on the Biogas Production Kinetics from the Anaerobic Digestion of Brewers’ Spent Grain," Energies, MDPI, vol. 12(8), pages 1-22, April.
    3. Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.
    4. Kacper Świechowski & Marek Liszewski & Przemysław Bąbelewski & Jacek A. Koziel & Andrzej Białowiec, 2019. "Fuel Properties of Torrefied Biomass from Pruning of Oxytree," Data, MDPI, vol. 4(2), pages 1-10, April.
    5. Paweł Stępień & Kacper Świechowski & Martyna Hnat & Szymon Kugler & Sylwia Stegenta-Dąbrowska & Jacek A. Koziel & Piotr Manczarski & Andrzej Białowiec, 2019. "Waste to Carbon: Biocoal from Elephant Dung as New Cooking Fuel," Energies, MDPI, vol. 12(22), pages 1-32, November.
    6. Paweł Stępień & Małgorzata Serowik & Jacek A. Koziel & Andrzej Białowiec, 2019. "Waste to Carbon Energy Demand Model and Data Based on the TGA and DSC Analysis of Individual MSW Components," Data, MDPI, vol. 4(2), pages 1-6, April.
    7. Ewa Syguła & Jacek A. Koziel & Andrzej Białowiec, 2019. "Proof-of-Concept of Spent Mushrooms Compost Torrefaction—Studying the Process Kinetics and the Influence of Temperature and Duration on the Calorific Value of the Produced Biocoal," Energies, MDPI, vol. 12(16), pages 1-19, August.
    8. Abbas, Yasir & Yun, Sining & Wang, Ziqi & Zhang, Yongwei & Zhang, Xianmei & Wang, Kaijun, 2021. "Recent advances in bio-based carbon materials for anaerobic digestion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. A. Sinan Akturk & Goksel N. Demirer, 2020. "Improved Food Waste Stabilization and Valorization by Anaerobic Digestion Through Supplementation of Conductive Materials and Trace Elements," Sustainability, MDPI, vol. 12(12), pages 1-11, June.
    10. Siti Zaharah Roslan & Siti Fairuz Zainudin & Alijah Mohd Aris & Khor Bee Chin & Mohibah Musa & Ahmad Rafizan Mohamad Daud & Syed Shatir A. Syed Hassan, 2023. "Hydrothermal Carbonization of Sewage Sludge into Solid Biofuel: Influences of Process Conditions on the Energetic Properties of Hydrochar," Energies, MDPI, vol. 16(5), pages 1-16, March.
    11. Sylwia Stegenta-Dąbrowska & Karolina Sobieraj & Joanna Rosik & Robert Sidełko & Marvin Valentin & Andrzej Białowiec, 2022. "The Development of Anammox and Chloroflexi Bacteria during the Composting of Sewage Sludge," Sustainability, MDPI, vol. 14(16), pages 1-10, August.
    12. Beata Jabłońska & Paweł Kiełbasa & Maroš Korenko & Tomasz Dróżdż, 2019. "Physical and Chemical Properties of Waste from PET Bottles Washing as A Component of Solid Fuels," Energies, MDPI, vol. 12(11), pages 1-17, June.
    13. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    14. Gyeong-Min Kim & Dae-Gyun Lee & Chung-Hwan Jeon, 2019. "Fundamental Characteristics and Kinetic Analysis of Lignocellulosic Woody and Herbaceous Biomass Fuels," Energies, MDPI, vol. 12(6), pages 1-16, March.
    15. Salman, Chaudhary Awais & Schwede, Sebastian & Thorin, Eva & Yan, Jinyue, 2017. "Enhancing biomethane production by integrating pyrolysis and anaerobic digestion processes," Applied Energy, Elsevier, vol. 204(C), pages 1074-1083.
    16. Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
    17. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2019. "A review of biochar properties and their roles in mitigating challenges with anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 291-307.
    18. Krystyna Lelicińska-Serafin & Piotr Manczarski & Anna Rolewicz-Kalińska, 2023. "An Insight into Post-Consumer Food Waste Characteristics as the Key to an Organic Recycling Method Selection in a Circular Economy," Energies, MDPI, vol. 16(4), pages 1-13, February.
    19. Jan Sprafke & Vicky Shettigondahalli Ekanthalu & Michael Nelles, 2020. "Continuous Anaerobic Co-Digestion of Biowaste with Crude Glycerol under Mesophilic Conditions," Sustainability, MDPI, vol. 12(22), pages 1-14, November.
    20. Freitas, F.F. & Furtado, A.C. & Piñas, J.A.V. & Venturini, O.J. & Barros, R.M. & Lora, E.E.S., 2022. "Holistic Life Cycle Assessment of a biogas-based electricity generation plant in a pig farm considering co-digestion and an additive," Energy, Elsevier, vol. 261(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6479-:d:652970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.