IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3191-d183579.html
   My bibliography  Save this article

Optimal Voltage and Frequency Control of an Islanded Microgrid Using Grasshopper Optimization Algorithm

Author

Listed:
  • Touqeer Ahmed Jumani

    (School of Electrical Engineering, University Technology Malaysia, Skudai, 81310 Johor Bahru, Malaysia
    Department of Electrical Engineering, Mehran University of Engineering and Technology, SZAB Campus, Khairpur Mirs 66020, Pakistan)

  • Mohd Wazir Mustafa

    (School of Electrical Engineering, University Technology Malaysia, Skudai, 81310 Johor Bahru, Malaysia)

  • Madihah Md Rasid

    (School of Electrical Engineering, University Technology Malaysia, Skudai, 81310 Johor Bahru, Malaysia)

  • Nayyar Hussain Mirjat

    (Department of Electrical Engineering, Mehran University of Engineering and Technology, Jamshoro 76090, Pakistan)

  • Zohaib Hussain Leghari

    (School of Electrical Engineering, University Technology Malaysia, Skudai, 81310 Johor Bahru, Malaysia
    Department of Electrical Engineering, Mehran University of Engineering and Technology, Jamshoro 76090, Pakistan)

  • M. Salman Saeed

    (School of Electrical Engineering, University Technology Malaysia, Skudai, 81310 Johor Bahru, Malaysia
    Department of Power Distribution, Multan Electric Power Company, Multan 66000, Pakistan)

Abstract

Due to the lack of inertia and uncertainty in the selection of optimal Proportional Integral (PI) controller gains, the voltage and frequency variations are higher in the islanded mode of the operation of a Microgrid (MG) compared to the grid-connected mode. This study, as such, develops an optimal control strategy for the voltage and frequency regulation of Photovoltaic (PV) based MG systems operating in islanding mode using Grasshopper Optimization Algorithm (GOA). The intelligence of the GOA is utilized to optimize the PI controller parameters. This ensures an enhanced dynamic response and power quality of the studied MG system during Distributed Generators (DG) insertion and load change conditions. A droop control is also employed within the control architecture, alongside the voltage and current control loops, as a power-sharing controller. In order to validate the performance of the proposed control architecture, its effectiveness in regulating MG voltage, frequency, and power quality is compared with the precedent Artificial Intelligence (AI) based control architectures for the same control objectives. The effectiveness of the proposed GOA based parameter selection method is also validated by analyzing its performance with respect to the improved transient response and power quality of the studied MG system in comparison with that of the Particle Swarm Optimization (PSO) and Whales Optimization Algorithm (WOA) based parameter selection methods. The simulation results establish that the GOA provides a faster and better solution than PSO and WOA which resulted in a minimum voltage and frequency overshoot with minimum output current and Total Harmonic Distortion (THD).

Suggested Citation

  • Touqeer Ahmed Jumani & Mohd Wazir Mustafa & Madihah Md Rasid & Nayyar Hussain Mirjat & Zohaib Hussain Leghari & M. Salman Saeed, 2018. "Optimal Voltage and Frequency Control of an Islanded Microgrid Using Grasshopper Optimization Algorithm," Energies, MDPI, vol. 11(11), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3191-:d:183579
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3191/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3191/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiayi, Huang & Chuanwen, Jiang & Rong, Xu, 2008. "A review on distributed energy resources and MicroGrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2472-2483, December.
    2. Sultana, U. & Khairuddin, Azhar B. & Sultana, Beenish & Rasheed, Nadia & Qazi, Sajid Hussain & Malik, Nimra Riaz, 2018. "Placement and sizing of multiple distributed generation and battery swapping stations using grasshopper optimizer algorithm," Energy, Elsevier, vol. 165(PA), pages 408-421.
    3. Zeng, Zheng & Yang, Huan & Zhao, Rongxiang & Cheng, Chong, 2013. "Topologies and control strategies of multi-functional grid-connected inverters for power quality enhancement: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 223-270.
    4. Sajid Hussain Qazi & Mohd Wazir Mustafa & Umbrin Sultana & Nayyar Hussain Mirjat & Shakir Ali Soomro & Nadia Rasheed, 2018. "Regulation of Voltage and Frequency in Solid Oxide Fuel Cell-Based Autonomous Microgrids Using the Whales Optimisation Algorithm," Energies, MDPI, vol. 11(5), pages 1-21, May.
    5. Barman, Mayur & Dev Choudhury, N.B. & Sutradhar, Suman, 2018. "A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India," Energy, Elsevier, vol. 145(C), pages 710-720.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghulam Abbas & Aqeel Ahmed Bhutto & Touqeer Ahmed Jumani & Sohrab Mirsaeidi & Mohsin Ali Tunio & Hammad Alnuman & Ahmed Alshahir, 2022. "A Modified Particle Swarm Optimization Algorithm for Power Sharing and Transient Response Improvement of a Grid-Tied Solar PV Based A.C. Microgrid," Energies, MDPI, vol. 16(1), pages 1-14, December.
    2. Marcin Steczek & Włodzimierz Jefimowski & Adam Szeląg, 2020. "Application of Grasshopper Optimization Algorithm for Selective Harmonics Elimination in Low-Frequency Voltage Source Inverter," Energies, MDPI, vol. 13(23), pages 1-16, December.
    3. Giulio Ferro & Michela Robba & Roberto Sacile, 2020. "A Model Predictive Control Strategy for Distribution Grids: Voltage and Frequency Regulation for Islanded Mode Operation," Energies, MDPI, vol. 13(10), pages 1-27, May.
    4. Saleh Masoud Abdallah Altbawi & Ahmad Safawi Bin Mokhtar & Saifulnizam Bin Abdul Khalid & Nusrat Husain & Ashraf Yahya & Syed Aqeel Haider & Rayan Hamza Alsisi & Lubna Moin, 2023. "Optimal Control of a Single-Stage Modular PV-Grid-Driven System Using a Gradient Optimization Algorithm," Energies, MDPI, vol. 16(3), pages 1-23, February.
    5. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    6. Jun Zhang & Denghua Zhong & Mengqi Zhao & Jia Yu & Fei Lv, 2019. "An Optimization Model for Construction Stage and Zone Plans of Rockfill Dams Based on the Enhanced Whale Optimization Algorithm," Energies, MDPI, vol. 12(3), pages 1-29, February.
    7. Maen Z. Kreishan & Ahmed F. Zobaa, 2021. "Optimal Allocation and Operation of Droop-Controlled Islanded Microgrids: A Review," Energies, MDPI, vol. 14(15), pages 1-45, July.
    8. Touqeer Ahmed Jumani & Mohd Wazir Mustafa & Nawaf N. Hamadneh & Samer H. Atawneh & Madihah Md. Rasid & Nayyar Hussain Mirjat & Muhammad Akram Bhayo & Ilyas Khan, 2020. "Computational Intelligence-Based Optimization Methods for Power Quality and Dynamic Response Enhancement of ac Microgrids," Energies, MDPI, vol. 13(16), pages 1-22, August.
    9. Xiang Li & Zhenya Ji & Fengkun Yang & Zhenlan Dou & Chunyan Zhang & Liangliang Chen, 2022. "A Distributed Two-Level Control Strategy for DC Microgrid Considering Safety of Charging Equipment," Energies, MDPI, vol. 15(22), pages 1-20, November.
    10. Seyedamin Valedsaravi & Abdelali El Aroudi & Jose A. Barrado-Rodrigo & Walid Issa & Luis Martínez-Salamero, 2022. "Control Design and Parameter Tuning for Islanded Microgrids by Combining Different Optimization Algorithms," Energies, MDPI, vol. 15(10), pages 1-25, May.
    11. Salman Habib & Ghulam Abbas & Touqeer A. Jumani & Aqeel Ahmed Bhutto & Sohrab Mirsaeidi & Emad M. Ahmed, 2022. "Improved Whale Optimization Algorithm for Transient Response, Robustness, and Stability Enhancement of an Automatic Voltage Regulator System," Energies, MDPI, vol. 15(14), pages 1-18, July.
    12. Talaat, M. & Hatata, A.Y. & Alsayyari, Abdulaziz S. & Alblawi, Adel, 2020. "A smart load management system based on the grasshopper optimization algorithm using the under-frequency load shedding approach," Energy, Elsevier, vol. 190(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mallol-Poyato, R. & Salcedo-Sanz, S. & Jiménez-Fernández, S. & Díaz-Villar, P., 2015. "Optimal discharge scheduling of energy storage systems in MicroGrids based on hyper-heuristics," Renewable Energy, Elsevier, vol. 83(C), pages 13-24.
    2. Isa, Normazlina Mat & Tan, Chee Wei & Yatim, A.H.M., 2018. "A comprehensive review of cogeneration system in a microgrid: A perspective from architecture and operating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2236-2263.
    3. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    4. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    5. Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
    6. Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
    7. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.
    8. Kailai Ni & Jianzhou Wang & Guangyu Tang & Danxiang Wei, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network for Electricity Load Forecasting: A Case Study in Australia," Energies, MDPI, vol. 12(13), pages 1-30, June.
    9. Jingpeng Yue & Zhijian Hu & Amjad Anvari-Moghaddam & Josep M. Guerrero, 2019. "A Multi-Market-Driven Approach to Energy Scheduling of Smart Microgrids in Distribution Networks," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
    10. Llaria, Alvaro & Curea, Octavian & Jiménez, Jaime & Camblong, Haritza, 2011. "Survey on microgrids: Unplanned islanding and related inverter control techniques," Renewable Energy, Elsevier, vol. 36(8), pages 2052-2061.
    11. Mahmud, Nasif & Zahedi, A., 2016. "Review of control strategies for voltage regulation of the smart distribution network with high penetration of renewable distributed generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 582-595.
    12. Zeeshan Anjum Memon & Dalila Mat Said & Mohammad Yusri Hassan & Hafiz Mudassir Munir & Faisal Alsaif & Sager Alsulamy, 2023. "Effective Deterministic Methodology for Enhanced Distribution Network Performance and Plug-in Electric Vehicles," Sustainability, MDPI, vol. 15(9), pages 1-37, April.
    13. Thomas Sachs & Anna Gründler & Milos Rusic & Gilbert Fridgen, 2019. "Framing Microgrid Design from a Business and Information Systems Engineering Perspective," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(6), pages 729-744, December.
    14. Justo, Jackson John & Mwasilu, Francis & Jung, Jin-Woo, 2015. "Doubly-fed induction generator based wind turbines: A comprehensive review of fault ride-through strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 447-467.
    15. Talaat, M. & Hatata, A.Y. & Alsayyari, Abdulaziz S. & Alblawi, Adel, 2020. "A smart load management system based on the grasshopper optimization algorithm using the under-frequency load shedding approach," Energy, Elsevier, vol. 190(C).
    16. Memon, Mudasir Ahmed & Mekhilef, Saad & Mubin, Marizan & Aamir, Muhammad, 2018. "Selective harmonic elimination in inverters using bio-inspired intelligent algorithms for renewable energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2235-2253.
    17. Batas Bjelic, Ilija & Ciric, Rade M., 2014. "Optimal distributed generation planning at a local level – A review of Serbian renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 79-86.
    18. Gong, Mingju & Zhao, Yin & Sun, Jiawang & Han, Cuitian & Sun, Guannan & Yan, Bo, 2022. "Load forecasting of district heating system based on Informer," Energy, Elsevier, vol. 253(C).
    19. Deyun Wang & Yanling Liu & Zeng Wu & Hongxue Fu & Yong Shi & Haixiang Guo, 2018. "Scenario Analysis of Natural Gas Consumption in China Based on Wavelet Neural Network Optimized by Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 11(4), pages 1-16, April.
    20. Zhou, Kaile & Yang, Shanlin, 2015. "A framework of service-oriented operation model of China׳s power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 719-725.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3191-:d:183579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.