IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p348-d1018014.html
   My bibliography  Save this article

A Modified Particle Swarm Optimization Algorithm for Power Sharing and Transient Response Improvement of a Grid-Tied Solar PV Based A.C. Microgrid

Author

Listed:
  • Ghulam Abbas

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Aqeel Ahmed Bhutto

    (Department of Mechanical Engineering, Mehran University of Engineering and Technology, SZAB Campus, Khairpur Mirs 66020, Pakistan)

  • Touqeer Ahmed Jumani

    (Department of Electrical Engineering, Mehran University of Engineering and Technology, SZAB Campus, Khairpur Mirs 66020, Pakistan)

  • Sohrab Mirsaeidi

    (School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Mohsin Ali Tunio

    (Department of Electrical Engineering, Mehran University of Engineering and Technology, SZAB Campus, Khairpur Mirs 66020, Pakistan)

  • Hammad Alnuman

    (Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia)

  • Ahmed Alshahir

    (Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia)

Abstract

The increasing penetration of Distributed Generators (D.G.) into the existing power system has brought some real challenges regarding the transient response of electrical systems. The injection of D.G.s and abrupt load changes may cause massive power, current, and voltage overshoots/undershoots, which consequently affects the equilibrium of the existing power system and deteriorate the performance of the connected electrical appliances. A robust and intelligent control strategy is of utmost importance to cope with these issues and enhance the penetration level of D.G.s into the existing power system. This paper presents a Modified Particle Swarm Optimization (MPSO) algorithm-based intelligent controller for attaining a desired power-sharing ratio between the M.G. and the main grid with an optimal transient response in a grid-tied Microgrid (M.G.) system. The proposed MPSO algorithm includes an additional parameter named best neighbor particles (rbest) in the velocity updating equation to convey additional information to every individual particle about all its neighbor particles, consequently leading to the increased exploration capability of the algorithm. The MPSO algorithm optimizes P.I. parameters for transient and steady-state response improvement of the studied M.G. system. The main dynamic response evaluation parameters are the overshoot and settling time for active and reactive power during the D.G. connection and load change. Furthermore, the performance of the proposed controller is compared with the PI-PSO-based MG controller, which validates the effectiveness of the proposed M.G. control scheme in maintaining the required active and reactive power under different operating conditions with minimum possible overshoot and settling time.

Suggested Citation

  • Ghulam Abbas & Aqeel Ahmed Bhutto & Touqeer Ahmed Jumani & Sohrab Mirsaeidi & Mohsin Ali Tunio & Hammad Alnuman & Ahmed Alshahir, 2022. "A Modified Particle Swarm Optimization Algorithm for Power Sharing and Transient Response Improvement of a Grid-Tied Solar PV Based A.C. Microgrid," Energies, MDPI, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:348-:d:1018014
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/348/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/348/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Touqeer Ahmed Jumani & Mohd Wazir Mustafa & Nawaf N. Hamadneh & Samer H. Atawneh & Madihah Md. Rasid & Nayyar Hussain Mirjat & Muhammad Akram Bhayo & Ilyas Khan, 2020. "Computational Intelligence-Based Optimization Methods for Power Quality and Dynamic Response Enhancement of ac Microgrids," Energies, MDPI, vol. 13(16), pages 1-22, August.
    2. Touqeer Ahmed Jumani & Mohd Wazir Mustafa & Madihah Md Rasid & Nayyar Hussain Mirjat & Zohaib Hussain Leghari & M. Salman Saeed, 2018. "Optimal Voltage and Frequency Control of an Islanded Microgrid Using Grasshopper Optimization Algorithm," Energies, MDPI, vol. 11(11), pages 1-20, November.
    3. Zhi Wu & Yuxuan Zhuang & Suyang Zhou & Shuning Xu & Peng Yu & Jinqiao Du & Xiner Luo & Ghulam Abbas, 2020. "Bi-Level Planning of Multi-Functional Vehicle Charging Stations Considering Land Use Types," Energies, MDPI, vol. 13(5), pages 1-17, March.
    4. Salman Habib & Ghulam Abbas & Touqeer A. Jumani & Aqeel Ahmed Bhutto & Sohrab Mirsaeidi & Emad M. Ahmed, 2022. "Improved Whale Optimization Algorithm for Transient Response, Robustness, and Stability Enhancement of an Automatic Voltage Regulator System," Energies, MDPI, vol. 15(14), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salman Habib & Ghulam Abbas & Touqeer A. Jumani & Aqeel Ahmed Bhutto & Sohrab Mirsaeidi & Emad M. Ahmed, 2022. "Improved Whale Optimization Algorithm for Transient Response, Robustness, and Stability Enhancement of an Automatic Voltage Regulator System," Energies, MDPI, vol. 15(14), pages 1-18, July.
    2. Faraz Bhurt & Aamir Ali & Muhammad U. Keerio & Ghulam Abbas & Zahoor Ahmed & Noor H. Mugheri & Yun-Su Kim, 2023. "Stochastic Multi-Objective Optimal Reactive Power Dispatch with the Integration of Wind and Solar Generation," Energies, MDPI, vol. 16(13), pages 1-22, June.
    3. Talaat, M. & Hatata, A.Y. & Alsayyari, Abdulaziz S. & Alblawi, Adel, 2020. "A smart load management system based on the grasshopper optimization algorithm using the under-frequency load shedding approach," Energy, Elsevier, vol. 190(C).
    4. Taha Selim Ustun, 2022. "Power Systems Imitate Nature for Improved Performance Use of Nature-Inspired Optimization Techniques," Energies, MDPI, vol. 15(17), pages 1-2, August.
    5. Sheeraz Iqbal & Salman Habib & Muhammad Ali & Aqib Shafiq & Anis ur Rehman & Emad M. Ahmed & Tahir Khurshaid & Salah Kamel, 2022. "The Impact of V2G Charging/Discharging Strategy on the Microgrid Environment Considering Stochastic Methods," Sustainability, MDPI, vol. 14(20), pages 1-22, October.
    6. Abdelhakim Idir & Laurent Canale & Yassine Bensafia & Khatir Khettab, 2022. "Design and Robust Performance Analysis of Low-Order Approximation of Fractional PID Controller Based on an IABC Algorithm for an Automatic Voltage Regulator System," Energies, MDPI, vol. 15(23), pages 1-20, November.
    7. Touqeer Ahmed Jumani & Mohd Wazir Mustafa & Nawaf N. Hamadneh & Samer H. Atawneh & Madihah Md. Rasid & Nayyar Hussain Mirjat & Muhammad Akram Bhayo & Ilyas Khan, 2020. "Computational Intelligence-Based Optimization Methods for Power Quality and Dynamic Response Enhancement of ac Microgrids," Energies, MDPI, vol. 13(16), pages 1-22, August.
    8. Marcin Steczek & Włodzimierz Jefimowski & Adam Szeląg, 2020. "Application of Grasshopper Optimization Algorithm for Selective Harmonics Elimination in Low-Frequency Voltage Source Inverter," Energies, MDPI, vol. 13(23), pages 1-16, December.
    9. Giulio Ferro & Michela Robba & Roberto Sacile, 2020. "A Model Predictive Control Strategy for Distribution Grids: Voltage and Frequency Regulation for Islanded Mode Operation," Energies, MDPI, vol. 13(10), pages 1-27, May.
    10. José A. Ventura, 2023. "Climate Benefits Advocated by the Development of Sustainable Vehicles and Charging Infrastructures in the Transport Sector," Energies, MDPI, vol. 16(9), pages 1-5, April.
    11. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    12. Maen Z. Kreishan & Ahmed F. Zobaa, 2021. "Optimal Allocation and Operation of Droop-Controlled Islanded Microgrids: A Review," Energies, MDPI, vol. 14(15), pages 1-45, July.
    13. Belqasem Aljafari & Subramanian Vasantharaj & Vairavasundaram Indragandhi & Rhanganath Vaibhav, 2022. "Optimization of DC, AC, and Hybrid AC/DC Microgrid-Based IoT Systems: A Review," Energies, MDPI, vol. 15(18), pages 1-30, September.
    14. Abdulsamed Tabak, 2023. "Novel TI λ DND 2 N 2 Controller Application with Equilibrium Optimizer for Automatic Voltage Regulator," Sustainability, MDPI, vol. 15(15), pages 1-16, July.
    15. Marialisa Nigro & Marina Ferrara & Rosita De Vincentis & Carlo Liberto & Gaetano Valenti, 2021. "Data Driven Approaches for Sustainable Development of E-Mobility in Urban Areas," Energies, MDPI, vol. 14(13), pages 1-19, July.
    16. Seyedamin Valedsaravi & Abdelali El Aroudi & Jose A. Barrado-Rodrigo & Walid Issa & Luis Martínez-Salamero, 2022. "Control Design and Parameter Tuning for Islanded Microgrids by Combining Different Optimization Algorithms," Energies, MDPI, vol. 15(10), pages 1-25, May.
    17. Saleh Masoud Abdallah Altbawi & Ahmad Safawi Bin Mokhtar & Saifulnizam Bin Abdul Khalid & Nusrat Husain & Ashraf Yahya & Syed Aqeel Haider & Rayan Hamza Alsisi & Lubna Moin, 2023. "Optimal Control of a Single-Stage Modular PV-Grid-Driven System Using a Gradient Optimization Algorithm," Energies, MDPI, vol. 16(3), pages 1-23, February.
    18. Yujie Liu & Jie Xu & Yong Zhou & Amat Muhtar & Li Wang, 2022. "Spatiotemporal Differentiation of the Coupling and Coordination of Production-Living-Ecology Functions in Hubei Province Based on the Global Entropy Value Method," IJERPH, MDPI, vol. 19(23), pages 1-27, November.
    19. Jun Zhang & Denghua Zhong & Mengqi Zhao & Jia Yu & Fei Lv, 2019. "An Optimization Model for Construction Stage and Zone Plans of Rockfill Dams Based on the Enhanced Whale Optimization Algorithm," Energies, MDPI, vol. 12(3), pages 1-29, February.
    20. Xiang Li & Zhenya Ji & Fengkun Yang & Zhenlan Dou & Chunyan Zhang & Liangliang Chen, 2022. "A Distributed Two-Level Control Strategy for DC Microgrid Considering Safety of Charging Equipment," Energies, MDPI, vol. 15(22), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:348-:d:1018014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.