IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2637-d361428.html
   My bibliography  Save this article

A Model Predictive Control Strategy for Distribution Grids: Voltage and Frequency Regulation for Islanded Mode Operation

Author

Listed:
  • Giulio Ferro

    (DIBRIS—Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16145 Genoa, Italy)

  • Michela Robba

    (DIBRIS—Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16145 Genoa, Italy)

  • Roberto Sacile

    (DIBRIS—Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16145 Genoa, Italy)

Abstract

In the last few years, one of the most important challenges of power technologies has been the integration of traditional energy production systems and distributed energy resources. Large-scale photovoltaic systems and wind farms may decrease the quality of the electrical grid service, mainly due to voltage and frequency peaks and fluctuations. Besides, new functionalities, such as the operation in islanded mode of some portions of the medium-voltage grid, are more and more required. In this respect, a model predictive control for voltage and frequency regulation in interconnected local distribution systems is presented. In the proposed model, each local system represents a collection of intelligent buildings and microgrids with a large capacity in active and reactive power regulation. The related model formalization includes a linear approximation of the power flow equations, based on stochastic variables related to the electrical load and to the production from renewable sources. A model predictive control problem is formalized, and a closed-loop linear control law has been obtained. In the results section, the proposed approach has been tested on the Institute of Electrical and Electronics Engineers(IEEE) 5 bus system, considering multiple loads and renewable sources variations on each local system.

Suggested Citation

  • Giulio Ferro & Michela Robba & Roberto Sacile, 2020. "A Model Predictive Control Strategy for Distribution Grids: Voltage and Frequency Regulation for Islanded Mode Operation," Energies, MDPI, vol. 13(10), pages 1-27, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2637-:d:361428
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2637/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2637/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dreidy, Mohammad & Mokhlis, H. & Mekhilef, Saad, 2017. "Inertia response and frequency control techniques for renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 144-155.
    2. Gholam Ali Alizadeh & Tohid Rahimi & Mohsen Hasan Babayi Nozadian & Sanjeevikumar Padmanaban & Zbigniew Leonowicz, 2019. "Improving Microgrid Frequency Regulation Based on the Virtual Inertia Concept while Considering Communication System Delay," Energies, MDPI, vol. 12(10), pages 1-15, May.
    3. Furqan Asghar & Muhammad Talha & Sung Ho Kim, 2017. "Robust Frequency and Voltage Stability Control Strategy for Standalone AC/DC Hybrid Microgrid," Energies, MDPI, vol. 10(6), pages 1-20, May.
    4. Jun Deng & Nan Xia & Jungang Yin & Jiliang Jin & Shutao Peng & Tong Wang, 2020. "Small-Signal Modeling and Parameter Optimization Design for Photovoltaic Virtual Synchronous Generator," Energies, MDPI, vol. 13(2), pages 1-14, January.
    5. Min-Rong Chen & Guo-Qiang Zeng & Yu-Xing Dai & Kang-Di Lu & Da-Qiang Bi, 2018. "Fractional-Order Model Predictive Frequency Control of an Islanded Microgrid," Energies, MDPI, vol. 12(1), pages 1-21, December.
    6. Giulio Ferro & Riccardo Minciardi & Luca Parodi & Michela Robba & Mansueto Rossi, 2020. "Optimal Control of Multiple Microgrids and Buildings by an Aggregator," Energies, MDPI, vol. 13(5), pages 1-23, February.
    7. Xu, Zhirong & Yang, Ping & Zheng, Chengli & Zhang, Yujia & Peng, Jiajun & Zeng, Zhiji, 2018. "Analysis on the organization and Development of multi-microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2204-2216.
    8. Chang Yuan & Peilin Xie & Dan Yang & Xiangning Xiao, 2018. "Transient Stability Analysis of Islanded AC Microgrids with a Significant Share of Virtual Synchronous Generators," Energies, MDPI, vol. 11(1), pages 1-19, January.
    9. Xiao Qi & Yan Bai & Huanhuan Luo & Yiqing Zhang & Guiping Zhou & Zhonghua Wei, 2018. "Fully-distributed Load Frequency Control Strategy in an Islanded Microgrid Considering Plug-In Electric Vehicles," Energies, MDPI, vol. 11(6), pages 1-18, June.
    10. Touqeer Ahmed Jumani & Mohd Wazir Mustafa & Madihah Md Rasid & Nayyar Hussain Mirjat & Zohaib Hussain Leghari & M. Salman Saeed, 2018. "Optimal Voltage and Frequency Control of an Islanded Microgrid Using Grasshopper Optimization Algorithm," Energies, MDPI, vol. 11(11), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kyunghwan Choi & Dong Soo Kim & Seok-Kyoon Kim, 2020. "Disturbance Observer-Based Offset-Free Global Tracking Control for Input-Constrained LTI Systems with DC/DC Buck Converter Applications," Energies, MDPI, vol. 13(16), pages 1-18, August.
    2. Shuchao Wang & Shenpeng Duan & Gaoxiang Mi & Yuping Lu, 2022. "Optimized Power Distribution Technology for Fast Frequency Response in Photovoltaic Power Stations," Energies, MDPI, vol. 15(23), pages 1-20, November.
    3. Giulio Ferro & Michela Robba & Roberto Sacile, 2021. "Optimal Control of Smart Distributed Power and Energy Systems," Energies, MDPI, vol. 15(1), pages 1-2, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehdi Hosseinzadeh & Farzad Rajaei Salmasi, 2020. "Islanding Fault Detection in Microgrids—A Survey," Energies, MDPI, vol. 13(13), pages 1-28, July.
    2. Pablo González-Inostroza & Claudia Rahmann & Ricardo Álvarez & Jannik Haas & Wolfgang Nowak & Christian Rehtanz, 2021. "The Role of Fast Frequency Response of Energy Storage Systems and Renewables for Ensuring Frequency Stability in Future Low-Inertia Power Systems," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    3. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    4. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    5. Talaat, M. & Hatata, A.Y. & Alsayyari, Abdulaziz S. & Alblawi, Adel, 2020. "A smart load management system based on the grasshopper optimization algorithm using the under-frequency load shedding approach," Energy, Elsevier, vol. 190(C).
    6. Lefeng, Shi & Shengnan, Lv & Chunxiu, Liu & Yue, Zhou & Cipcigan, Liana & Acker, Thomas L., 2020. "A framework for electric vehicle power supply chain development," Utilities Policy, Elsevier, vol. 64(C).
    7. Dario Garozzo & Giuseppe Marco Tina, 2020. "Evaluation of the Effective Active Power Reserve for Fast Frequency Response of PV with BESS Inverters Considering Reactive Power Control," Energies, MDPI, vol. 13(13), pages 1-16, July.
    8. Anshuman Satapathy & Niranjan Nayak & Tanmoy Parida, 2022. "Real-Time Power Quality Enhancement in a Hybrid Micro-Grid Using Nonlinear Autoregressive Neural Network," Energies, MDPI, vol. 15(23), pages 1-35, November.
    9. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    10. Junfeng Qi & Fei Tang & Jiarui Xie & Xinang Li & Xiaoqing Wei & Zhuo Liu, 2022. "Research on Frequency Response Modeling and Frequency Modulation Parameters of the Power System Highly Penetrated by Wind Power," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    11. Md Alamgir Hossain & Hemanshu Roy Pota & Walid Issa & Md Jahangir Hossain, 2017. "Overview of AC Microgrid Controls with Inverter-Interfaced Generations," Energies, MDPI, vol. 10(9), pages 1-27, August.
    12. Oshnoei, Soroush & Aghamohammadi, Mohammad Reza & Oshnoei, Siavash & Sahoo, Subham & Fathollahi, Arman & Khooban, Mohammad Hasan, 2023. "A novel virtual inertia control strategy for frequency regulation of islanded microgrid using two-layer multiple model predictive control," Applied Energy, Elsevier, vol. 343(C).
    13. Mararakanye, Ndamulelo & Bekker, Bernard, 2019. "Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 441-451.
    14. Ninoslav Holjevac & Tomislav Baškarad & Josip Đaković & Matej Krpan & Matija Zidar & Igor Kuzle, 2021. "Challenges of High Renewable Energy Sources Integration in Power Systems—The Case of Croatia," Energies, MDPI, vol. 14(4), pages 1-20, February.
    15. Jose Rueda Torres & Zameer Ahmad & Nidarshan Veera Kumar & Elyas Rakhshani & Ebrahim Adabi & Peter Palensky & Mart van der Meijden, 2021. "Power Hardware-in-the-Loop-Based Performance Analysis of Different Converter Controllers for Fast Active Power Regulation in Low-Inertia Power Systems," Energies, MDPI, vol. 14(11), pages 1-15, June.
    16. Okur, Özge & Voulis, Nina & Heijnen, Petra & Lukszo, Zofia, 2019. "Aggregator-mediated demand response: Minimizing imbalances caused by uncertainty of solar generation," Applied Energy, Elsevier, vol. 247(C), pages 426-437.
    17. Gonzalo Abad & Aitor Laka & Gabriel Saavedra & Jon Andoni Barrena, 2018. "Analytical Modeling Approach to Study Harmonic Mitigation in AC Grids with Active Impedance at Selective Frequencies," Energies, MDPI, vol. 11(6), pages 1-31, May.
    18. Achitaev, Andrey A. & Suslov, Konstantin V. & Nazarychev, Alexander N. & Volkova, Irina O. & Kozhemyakin, Vyacheslav E. & Voloshin, Alexander A. & Minakov, Andrey V., 2022. "Application of electromagnetic continuous variable transmission in hydraulic turbines to increase stability of an off-grid power system," Renewable Energy, Elsevier, vol. 196(C), pages 125-136.
    19. Hirase, Yuko & Abe, Kensho & Sugimoto, Kazushige & Sakimoto, Kenichi & Bevrani, Hassan & Ise, Toshifumi, 2018. "A novel control approach for virtual synchronous generators to suppress frequency and voltage fluctuations in microgrids," Applied Energy, Elsevier, vol. 210(C), pages 699-710.
    20. Serban, Ioan, 2018. "A control strategy for microgrids: Seamless transfer based on a leading inverter with supercapacitor energy storage system," Applied Energy, Elsevier, vol. 221(C), pages 490-507.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2637-:d:361428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.