IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v160y2020icp1081-1095.html
   My bibliography  Save this article

Performance evaluation of self-cooling concentrating photovoltaics systems using nucleate boiling heat transfer

Author

Listed:
  • Khan, Shoukat Alim
  • Bicer, Yusuf
  • Al-Ghamdi, Sami G.
  • Koç, Muammer

Abstract

In this study, nucleate boiling heat transfer (NBHT) based self-cooling thermal management system is designed and thermodynamically analyzed for high concentrating photovoltaics (CPV). The overall self-cooling system, consisting of two rows of CPV i.e. CPV 1 and CPV 2, iscoupled with the absorption cooling (AbC) system. Thermal energy from CPV 1 is supplied to AbC system to produce cooling, which is then used to reduce the temperature of CPV 2. Both CPV systems work simultaneously under the same solar energy conditions, hence, the demand and supply of energy are continuously in phase. Under the designed conditions, CPV 1, with an installed capacity of 66.4 kW, an operating temperature of 375.3 K and electrical efficiency of 35.5%, has the ability to cool down about 50.6 kW of CPV 2 system with an operating temperature of 335.8 K and 37.5% of electrical efficiency. A parametric study is performed to analyze the performance of the overall system at various working conditions and installed capacities. Furthermore, the designed system is analyzed for two different types of multi-junction solar cells and three different types of coolants: water, ethanol, and n-pentane. Due to higher latent heat, water has been proven to perform better working fluid with higher ability of concentration ratio. The optimum NBHT operating temperatures for CPV1 and CPV2 were found to be about 353 K and 349 K with maximum overall system efficiency of 36.64%.

Suggested Citation

  • Khan, Shoukat Alim & Bicer, Yusuf & Al-Ghamdi, Sami G. & Koç, Muammer, 2020. "Performance evaluation of self-cooling concentrating photovoltaics systems using nucleate boiling heat transfer," Renewable Energy, Elsevier, vol. 160(C), pages 1081-1095.
  • Handle: RePEc:eee:renene:v:160:y:2020:i:c:p:1081-1095
    DOI: 10.1016/j.renene.2020.06.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120309800
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.06.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gilmore, Nicholas & Timchenko, Victoria & Menictas, Chris, 2018. "Microchannel cooling of concentrator photovoltaics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1041-1059.
    2. Sun, Yong & Wang, Yiping & Zhu, Li & Yin, Baoquan & Xiang, Haijun & Huang, Qunwu, 2014. "Direct liquid-immersion cooling of concentrator silicon solar cells in a linear concentrating photovoltaic receiver," Energy, Elsevier, vol. 65(C), pages 264-271.
    3. Shoukat A. Khan & Muataz A. Atieh & Muammer Koç, 2018. "Micro-Nano Scale Surface Coating for Nucleate Boiling Heat Transfer: A Critical Review," Energies, MDPI, vol. 11(11), pages 1-30, November.
    4. Bicer, Yusuf & Dincer, Ibrahim, 2016. "Analysis and performance evaluation of a renewable energy based multigeneration system," Energy, Elsevier, vol. 94(C), pages 623-632.
    5. Emam, Mohamed & Ookawara, Shinichi & Ahmed, Mahmoud, 2019. "Thermal management of electronic devices and concentrator photovoltaic systems using phase change material heat sinks: Experimental investigations," Renewable Energy, Elsevier, vol. 141(C), pages 322-339.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ni, Song & Pan, Chin & Hibiki, Takashi & Zhao, Jiyun, 2024. "Applications of nucleate boiling in renewable energy and thermal management and recent advances in modeling——a review," Energy, Elsevier, vol. 289(C).
    2. Peng, Hao & Du, Yanlian & Hu, Fenfen & Tian, Zhen & Shen, Yijun, 2023. "Thermal management of high concentrator photovoltaic system using a novel double-layer tree-shaped fractal microchannel heat sink," Renewable Energy, Elsevier, vol. 204(C), pages 77-93.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam, Kazi & Riggs, Brian & Ji, Yaping & Robertson, John & Spitler, Christopher & Romanin, Vince & Codd, Daniel & Escarra, Matthew D., 2019. "Transmissive microfluidic active cooling for concentrator photovoltaics," Applied Energy, Elsevier, vol. 236(C), pages 906-915.
    2. Calise, Francesco & Macaluso, Adriano & Piacentino, Antonio & Vanoli, Laura, 2017. "A novel hybrid polygeneration system supplying energy and desalinated water by renewable sources in Pantelleria Island," Energy, Elsevier, vol. 137(C), pages 1086-1106.
    3. Cameron, William James & Reddy, K. Srinivas & Mallick, Tapas Kumar, 2022. "Review of high concentration photovoltaic thermal hybrid systems for highly efficient energy cogeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    4. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.
    5. Liang Chen & Xingchen Li & Runfeng Xiao & Kunpeng Lv & Xue Yang & Yu Hou, 2020. "Flow Boiling of Low-Pressure Water in Microchannels of Large Aspect Ratio," Energies, MDPI, vol. 13(11), pages 1-21, May.
    6. Fu, Xiaowei & Lei, Yuan & Xiao, Yao & Wang, Jiliang & Zhou, Shiyi & Lei, Jingxin, 2021. "Graft poly(ethylene glycol)-based thermosetting phase change materials networks with ultrahigh encapsulation fraction and latent heat efficiency," Renewable Energy, Elsevier, vol. 179(C), pages 1076-1084.
    7. Hesam Moghadasi & Navid Malekian & Hamid Saffari & Amir Mirza Gheitaghy & Guo Qi Zhang, 2020. "Recent Advances in the Critical Heat Flux Amelioration of Pool Boiling Surfaces Using Metal Oxide Nanoparticle Deposition," Energies, MDPI, vol. 13(15), pages 1-49, August.
    8. Khalifa Aliyu Ibrahim & Patrick Luk & Zhenhua Luo, 2023. "Cooling of Concentrated Photovoltaic Cells—A Review and the Perspective of Pulsating Flow Cooling," Energies, MDPI, vol. 16(6), pages 1-23, March.
    9. Modi, Anish & Bühler, Fabian & Andreasen, Jesper Graa & Haglind, Fredrik, 2017. "A review of solar energy based heat and power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1047-1064.
    10. Francesco Calise & Francesco Liberato Cappiello & Massimo Dentice d’Accadia & Maria Vicidomini, 2020. "Thermo-Economic Analysis of Hybrid Solar-Geothermal Polygeneration Plants in Different Configurations," Energies, MDPI, vol. 13(9), pages 1-29, May.
    11. Calise, Francesco & de Notaristefani di Vastogirardi, Giulio & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2018. "Simulation of polygeneration systems," Energy, Elsevier, vol. 163(C), pages 290-337.
    12. Ladislav Suk & Taron Petrosyan & Kamil Stevanka & Daniel Vlcek & Pavel Gejdos, 2020. "Experimental Investigation of Critical Heat Flux on Different Surfaces at Low Pressure and Low Flow," Energies, MDPI, vol. 13(19), pages 1-23, October.
    13. S. A. M. Mehryan & Kaamran Raahemifar & Leila Sasani Gargari & Ahmad Hajjar & Mohamad El Kadri & Obai Younis & Mohammad Ghalambaz, 2021. "Latent Heat Phase Change Heat Transfer of a Nanoliquid with Nano–Encapsulated Phase Change Materials in a Wavy-Wall Enclosure with an Active Rotating Cylinder," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    14. Sijun Xu & Hua Zhang & Zilong Wang, 2023. "Thermal Management and Energy Consumption in Air, Liquid, and Free Cooling Systems for Data Centers: A Review," Energies, MDPI, vol. 16(3), pages 1-25, January.
    15. Fahad Ghallab Al-Amri & Taher Maatallah & Richu Zachariah & Ahmed T. Okasha & Abdullah Khalid Alghamdi, 2022. "Enhanced Net Channel Based-Heat Sink Designs for Cooling of High Concentration Photovoltaic (HCPV) Systems in Dammam City," Sustainability, MDPI, vol. 14(7), pages 1-22, March.
    16. Usón, Sergio & Uche, Javier & Martínez, Amaya & del Amo, Alejandro & Acevedo, Luis & Bayod, Ángel, 2019. "Exergy assessment and exergy cost analysis of a renewable-based and hybrid trigeneration scheme for domestic water and energy supply," Energy, Elsevier, vol. 168(C), pages 662-683.
    17. Powell, Kody M. & Rashid, Khalid & Ellingwood, Kevin & Tuttle, Jake & Iverson, Brian D., 2017. "Hybrid concentrated solar thermal power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 215-237.
    18. Ling, Yun-Zhi & Zhang, Xiao-Song & Wang, Feng & She, Xiao-Hui, 2020. "Performance study of phase change materials coupled with three-dimensional oscillating heat pipes with different structures for electronic cooling," Renewable Energy, Elsevier, vol. 154(C), pages 636-649.
    19. Evangelos Bellos & Christos Tzivanidis, 2017. "Optimization of a Solar-Driven Trigeneration System with Nanofluid-Based Parabolic Trough Collectors," Energies, MDPI, vol. 10(7), pages 1-31, June.
    20. Maruoka, Nobuhiro & Tsutsumi, Taichi & Ito, Akihisa & Hayasaka, Miho & Nogami, Hiroshi, 2020. "Heat release characteristics of a latent heat storage heat exchanger by scraping the solidified phase change material layer," Energy, Elsevier, vol. 205(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:160:y:2020:i:c:p:1081-1095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.