IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v76y2014icp428-435.html
   My bibliography  Save this article

Flow boiling heat transfer on nanowire-coated surfaces with highly wetting liquid

Author

Listed:
  • Shin, Sangwoo
  • Choi, Geehong
  • Kim, Beom Seok
  • Cho, Hyung Hee

Abstract

Owing to the recent advances in nanotechnology, one significant progress in energy technology is increased cooling ability. It has recently been shown that nanowires can improve pool boiling heat transfer due to the unique features such as enhanced wetting and enlarged nucleation sites. Applying such nanowires on a flow boiling, which is another major class of boiling phenomenon that is associated with forced convection, is yet immature and scarce despite its importance in various applications such as liquid cooling of energy, electronics and refrigeration systems. Here, we investigate flow boiling heat transfer on surfaces that are coated with SiNWs (silicon nanowires). Also, we use highly-wetting dielectric liquid, FC-72, as a working fluid. An interesting wetting behavior is observed where the presence of SiNWs reduces wetting and wicking that in turn leads to significant decrease of CHF (critical heat flux) compared to the plain surface, which opposes the current consensus. Also, the effects of nanowire length and Reynolds number on the boiling heat transfer are shown to be highly nonmonotonic. We attempt to explain such an unusual behavior on the basis of wetting, nucleation and forced convection, and we show that such factors are highly coupled in a way that lead to unusual behavior.

Suggested Citation

  • Shin, Sangwoo & Choi, Geehong & Kim, Beom Seok & Cho, Hyung Hee, 2014. "Flow boiling heat transfer on nanowire-coated surfaces with highly wetting liquid," Energy, Elsevier, vol. 76(C), pages 428-435.
  • Handle: RePEc:eee:energy:v:76:y:2014:i:c:p:428-435
    DOI: 10.1016/j.energy.2014.08.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214009736
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.08.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alami, Abdul Hai & Rajab, Bilal & Aokal, Kamilia, 2017. "Assessment of silver nanowires infused with zinc oxide as a transparent electrode for dye-sensitized solar cell applications," Energy, Elsevier, vol. 139(C), pages 1231-1236.
    2. Shoukat A. Khan & Muataz A. Atieh & Muammer Koç, 2018. "Micro-Nano Scale Surface Coating for Nucleate Boiling Heat Transfer: A Critical Review," Energies, MDPI, vol. 11(11), pages 1-30, November.
    3. Wang, Yiping & Fu, Hailing & Huang, Qunwu & Cui, Yong & Sun, Yong & Jiang, Lihong, 2015. "Experimental study of direct contact vaporization heat transfer on n-pentane-water flowing interface," Energy, Elsevier, vol. 93(P1), pages 854-863.
    4. Namkyu Lee & Beom Seok Kim & Hokyu Moon & Joon-Soo Lim & Hyung Hee Cho, 2019. "Heat-Absorbing Capacity of High-Heat-Flux Components in Nuclear Fusion Reactors," Energies, MDPI, vol. 12(19), pages 1-15, October.
    5. Sedmak, Ivan & Urbančič, Iztok & Podlipec, Rok & Štrancar, Janez & Mortier, Michel & Golobič, Iztok, 2016. "Submicron thermal imaging of a nucleate boiling process using fluorescence microscopy," Energy, Elsevier, vol. 109(C), pages 436-445.
    6. Fei, Yu & Xiao, Qingtai & Xu, Jianxin & Pan, Jianxin & Wang, Shibo & Wang, Hua & Huang, Junwei, 2015. "A novel approach for measuring bubbles uniformity and mixing efficiency in a direct contact heat exchanger," Energy, Elsevier, vol. 93(P2), pages 2313-2320.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:76:y:2014:i:c:p:428-435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.