IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p2941-d178808.html
   My bibliography  Save this article

A Review of Underground Soil and Night Sky as Passive Heat Sink: Design Configurations and Models

Author

Listed:
  • Rachana Vidhi

    (Harvard Extension School, Harvard University, Cambridge, MA 02138, USA)

Abstract

Energy consumption for heating and cooling constitute the majority of the energy use for building loads. Using passive cooling systems to reduce the energy consumption or to make the process more efficient can be very beneficial. Ground coupled heat exchangers and night sky radiative cooling systems have been used for centuries to achieve cooling and ice making. Ground coupled heat exchangers use the temperature difference between underground soil and ambient air or water for heat transfer between the soil and the fluid passing through buried pipes. Night sky radiative cooling takes advantage of the night sky as the coldest heat sink available for heat transfer with any surface. Use of these simple designs with the modern cooling/heating systems has the potential for a major impact on the heating and cooling needs. This review paper describes the various designs, configurations and applications of these systems as well as determining the parameters that impact their performance.

Suggested Citation

  • Rachana Vidhi, 2018. "A Review of Underground Soil and Night Sky as Passive Heat Sink: Design Configurations and Models," Energies, MDPI, vol. 11(11), pages 1-24, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2941-:d:178808
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/2941/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/2941/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Yuebin & Li, Haorong & Niu, Fuxin & Yu, Daihong, 2014. "Investigation of a coupled geothermal cooling system with earth tube and solar chimney," Applied Energy, Elsevier, vol. 114(C), pages 209-217.
    2. Rakesh Kumar, S.C Kaushik, Ar. Ramesh Srikonda, 2003. "Cooling and heating potential of earth-air tunnel heat exchanger (EATHE) for non-air-conditioned building," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 19(4), pages 373-386.
    3. Girja Sharan & Jadhav Ratan, 2003. "Performance of Single Pass Earth-Tube Heat Exchanger: An Experimental Study," IIMA Working Papers WP2003-01-07, Indian Institute of Management Ahmedabad, Research and Publication Department.
    4. Tang, Runsheng & Etzion, Y., 2005. "Cooling performance of roof ponds with gunny bags floating on water surface as compared with a movable insulation," Renewable Energy, Elsevier, vol. 30(9), pages 1373-1385.
    5. Peretti, Clara & Zarrella, Angelo & De Carli, Michele & Zecchin, Roberto, 2013. "The design and environmental evaluation of earth-to-air heat exchangers (EAHE). A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 107-116.
    6. Mustafa Omer, Abdeen, 2008. "Ground-source heat pumps systems and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 344-371, February.
    7. Eicker, Ursula, 2010. "Cooling strategies, summer comfort and energy performance of a rehabilitated passive standard office building," Applied Energy, Elsevier, vol. 87(6), pages 2031-2039, June.
    8. Chong, Chiew Shan Anthony & Gan, Guohui & Verhoef, Anne & Garcia, Raquel Gonzalez & Vidale, Pier Luigi, 2013. "Simulation of thermal performance of horizontal slinky-loop heat exchangers for ground source heat pumps," Applied Energy, Elsevier, vol. 104(C), pages 603-610.
    9. Erell, E. & Etzion, Y., 1999. "Analysis and experimental verification of an improved cooling radiator," Renewable Energy, Elsevier, vol. 16(1), pages 700-703.
    10. Kumar, Rakesh & Sinha, A.R. & Singh, B.K. & Modhukalya, U., 2008. "A design optimization tool of earth-to-air heat exchanger using a genetic algorithm," Renewable Energy, Elsevier, vol. 33(10), pages 2282-2288.
    11. Kumar, Rakesh & Kaushik, S.C. & Garg, S.N., 2006. "Heating and cooling potential of an earth-to-air heat exchanger using artificial neural network," Renewable Energy, Elsevier, vol. 31(8), pages 1139-1155.
    12. Ascione, Fabrizio & Bellia, Laura & Minichiello, Francesco, 2011. "Earth-to-air heat exchangers for Italian climates," Renewable Energy, Elsevier, vol. 36(8), pages 2177-2188.
    13. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2015. "Ground coupled heat exchangers: A review and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 83-92.
    14. Trombe, A. & Pettit, M. & Bourret, B., 1991. "Air cooling by earth tube heat exchanger: Experimental approach," Renewable Energy, Elsevier, vol. 1(5), pages 699-707.
    15. Ozgener, Leyla, 2011. "A review on the experimental and analytical analysis of earth to air heat exchanger (EAHE) systems in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4483-4490.
    16. Yuanshen Lu & Kamel Hooman & Aleks D. Atrens & Hugh Russell, 2017. "An Experimental Facility to Validate Ground Source Heat Pump Optimisation Models for the Australian Climate," Energies, MDPI, vol. 10(1), pages 1-15, January.
    17. Yang, H. & Cui, P. & Fang, Z., 2010. "Vertical-borehole ground-coupled heat pumps: A review of models and systems," Applied Energy, Elsevier, vol. 87(1), pages 16-27, January.
    18. Claesson, Johan & Eskilson, Per, 1988. "Conductive heat extraction to a deep borehole: Thermal analyses and dimensioning rules," Energy, Elsevier, vol. 13(6), pages 509-527.
    19. Florides, Georgios & Kalogirou, Soteris, 2007. "Ground heat exchangers—A review of systems, models and applications," Renewable Energy, Elsevier, vol. 32(15), pages 2461-2478.
    20. Khedari, J. & Waewsak, J. & Thepa, S. & Hirunlabh, J., 2000. "Field investigation of night radiation cooling under tropical climate," Renewable Energy, Elsevier, vol. 20(2), pages 183-193.
    21. Hamada, Yasuhiro & Nakamura, Makoto & Saitoh, Hisashi & Kubota, Hideki & Ochifuji, Kiyoshi, 2007. "Improved underground heat exchanger by using no-dig method for space heating and cooling," Renewable Energy, Elsevier, vol. 32(3), pages 480-495.
    22. Niu, Fuxin & Yu, Yuebin & Yu, Daihong & Li, Haorong, 2015. "Heat and mass transfer performance analysis and cooling capacity prediction of earth to air heat exchanger," Applied Energy, Elsevier, vol. 137(C), pages 211-221.
    23. Jacovides, C.P. & Mihalakakou, G., 1995. "An underground pipe system as an energy source for cooling/heating purposes," Renewable Energy, Elsevier, vol. 6(8), pages 893-900.
    24. Mihalakakou, G. & Santamouris, M. & Asimakopoulos, D. & Papanikolaou, N., 1994. "Impact of ground cover on the efficiencies of earth-to-air heat exchangers," Applied Energy, Elsevier, vol. 48(1), pages 19-32.
    25. Runsheng, Tang & Etzion, Y. & Erell, E., 2003. "Experimental studies on a novel roof pond configuration for the cooling of buildings," Renewable Energy, Elsevier, vol. 28(10), pages 1513-1522.
    26. Zarrella, Angelo & De Carli, Michele, 2013. "Heat transfer analysis of short helical borehole heat exchangers," Applied Energy, Elsevier, vol. 102(C), pages 1477-1491.
    27. Li, Haorong & Yu, Yuebin & Niu, Fuxin & Shafik, Michel & Chen, Bing, 2014. "Performance of a coupled cooling system with earth-to-air heat exchanger and solar chimney," Renewable Energy, Elsevier, vol. 62(C), pages 468-477.
    28. Cristina Baglivo & Delia D’Agostino & Paolo Maria Congedo, 2018. "Design of a Ventilation System Coupled with a Horizontal Air-Ground Heat Exchanger (HAGHE) for a Residential Building in a Warm Climate," Energies, MDPI, vol. 11(8), pages 1-27, August.
    29. Mihalakakou, G. & Lewis, J.O. & Santamouris, M., 1996. "The influence of different ground covers on the heating potential of earth-to-air heat exchangers," Renewable Energy, Elsevier, vol. 7(1), pages 33-46.
    30. Lee, C.K. & Lam, H.N., 2008. "Computer simulation of borehole ground heat exchangers for geothermal heat pump systems," Renewable Energy, Elsevier, vol. 33(6), pages 1286-1296.
    31. Qinggong Liu & Zhenyu Du & Yi Fan, 2018. "Heat and Mass Transfer Behavior Prediction and Thermal Performance Analysis of Earth-to-Air Heat Exchanger by Finite Volume Method," Energies, MDPI, vol. 11(6), pages 1-19, June.
    32. Mihalakakou, G. & Santamouris, M. & Asimakopoulos, D., 1994. "Use of the ground for heat dissipation," Energy, Elsevier, vol. 19(1), pages 17-25.
    33. Badescu, Viorel, 2007. "Simple and accurate model for the ground heat exchanger of a passive house," Renewable Energy, Elsevier, vol. 32(5), pages 845-855.
    34. Matteo Rivoire & Alessandro Casasso & Bruno Piga & Rajandrea Sethi, 2018. "Assessment of Energetic, Economic and Environmental Performance of Ground-Coupled Heat Pumps," Energies, MDPI, vol. 11(8), pages 1-23, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed M. Abdel-Ghany & Ibrahim M. Al-Helal & Abdullah Alsadon & Abdullah Ibrahim & Mohamed Shady, 2022. "Measuring and Predicting the In-Ground Temperature Profile for Geothermal Energy Systems in the Desert of Arid Regions," Energies, MDPI, vol. 15(19), pages 1-12, October.
    2. Eduardo de la Rocha Camba & Fontina Petrakopoulou, 2020. "Earth-Cooling Air Tunnels for Thermal Power Plants: Initial Design by CFD Modelling," Energies, MDPI, vol. 13(4), pages 1-19, February.
    3. Tyler R. Stevens & Nathan B. Crane & Rydge B. Mulford, 2023. "Topology Morphing Insulation: A Review of Technologies and Energy Performance in Dynamic Building Insulation," Energies, MDPI, vol. 16(19), pages 1-38, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Halkos, George & Paravantis, John & Makridis, Sofoklis & Papaefthimiou, Spiros, 2022. "Applications of earth-to-air heat exchangers: A holistic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    2. Singh, Ramkishore & Sawhney, R.L. & Lazarus, I.J. & Kishore, V.V.N., 2018. "Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2162-2185.
    3. Bordoloi, Namrata & Sharma, Aashish & Nautiyal, Himanshu & Goel, Varun, 2018. "An intense review on the latest advancements of Earth Air Heat Exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 261-280.
    4. Taurines, Kevin & Giroux-Julien, Stéphanie & Farid, Mohammed & Ménézo, Christophe, 2021. "Numerical modelling of a building integrated earth-to-air heat exchanger," Applied Energy, Elsevier, vol. 296(C).
    5. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2016. "Hybrid ground coupled heat exchanger systems for space heating/cooling applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 724-738.
    6. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    7. H.Ali, Mohammed & Kurjak, Zoltan & Beke, Janos, 2023. "Investigation of earth air heat exchangers functioning in arid locations using Matlab/Simulink," Renewable Energy, Elsevier, vol. 209(C), pages 632-643.
    8. Rodrigues, Michel Kepes & Vaz, Joaquim & Oliveira Rocha, Luiz Alberto & Domingues dos Santos, Elizaldo & Isoldi, Liércio André, 2022. "A full approach to Earth-Air Heat Exchanger employing computational modeling, performance analysis and geometric evaluation," Renewable Energy, Elsevier, vol. 191(C), pages 535-556.
    9. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2015. "Ground coupled heat exchangers: A review and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 83-92.
    10. Peretti, Clara & Zarrella, Angelo & De Carli, Michele & Zecchin, Roberto, 2013. "The design and environmental evaluation of earth-to-air heat exchangers (EAHE). A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 107-116.
    11. Akhtari, Mohammad Reza & Shayegh, Iman & Karimi, Nader, 2020. "Techno-economic assessment and optimization of a hybrid renewable earth - air heat exchanger coupled with electric boiler, hydrogen, wind and PV configurations," Renewable Energy, Elsevier, vol. 148(C), pages 839-851.
    12. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    13. Paolo Maria Congedo & Caterina Lorusso & Maria Grazia De Giorgi & Riccardo Marti & Delia D’Agostino, 2016. "Horizontal Air-Ground Heat Exchanger Performance and Humidity Simulation by Computational Fluid Dynamic Analysis," Energies, MDPI, vol. 9(11), pages 1-14, November.
    14. Aldona Skotnicka-Siepsiak, 2020. "Operation of a Tube GAHE in Northeastern Poland in Spring and Summer—A Comparison of Real-World Data with Mathematically Modeled Data," Energies, MDPI, vol. 13(7), pages 1-15, April.
    15. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    16. Carotenuto, Alberto & Ciccolella, Michela & Massarotti, Nicola & Mauro, Alessandro, 2016. "Models for thermo-fluid dynamic phenomena in low enthalpy geothermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 330-355.
    17. Selamat, Salsuwanda & Miyara, Akio & Kariya, Keishi, 2016. "Numerical study of horizontal ground heat exchangers for design optimization," Renewable Energy, Elsevier, vol. 95(C), pages 561-573.
    18. Qin, Di & Liu, Zhengxuan & Zhou, Yuekuan & Yan, Zhongjun & Chen, Dachuan & Zhang, Guoqiang, 2021. "Dynamic performance of a novel air-soil heat exchanger coupling with diversified energy storage components—modelling development, experimental verification, parametrical design and robust operation," Renewable Energy, Elsevier, vol. 167(C), pages 542-557.
    19. Gomat, Landry Jean Pierre & Elombo Motoula, Smaël Magloire & M’Passi-Mabiala, Bernard, 2020. "An analytical method to evaluate the impact of vertical part of an earth-air heat exchanger on the whole system," Renewable Energy, Elsevier, vol. 162(C), pages 1005-1016.
    20. Maoz & Saddam Ali & Noor Muhammad & Ahmad Amin & Mohammad Sohaib & Abdul Basit & Tanvir Ahmad, 2019. "Parametric Optimization of Earth to Air Heat Exchanger Using Response Surface Method," Sustainability, MDPI, vol. 11(11), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2941-:d:178808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.