IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v19y1994i1p17-25.html
   My bibliography  Save this article

Use of the ground for heat dissipation

Author

Listed:
  • Mihalakakou, G.
  • Santamouris, M.
  • Asimakopoulos, D.

Abstract

A numerical model to calculate the performance of multiple, parallel, earth-to-air heat exchangers is described. The system consists of N parallel earth tubes, buried in the ground, through which ambient or indoor air is propelled and cooled by the bulk temperature of the natural ground. The technique of superposition was used for analysis of the thermal process. The proposed model has been successfully validated against experimental data. The cooling potential of the system under real climatic conditions was investigated while operational limits of the system were analyzed using as inputs to the model multi-year soil and ambient air-temperature measurements. An extensive sensitivity investigation has been performed to analyse the impact of the main design parameters on the cooling potential of the system.

Suggested Citation

  • Mihalakakou, G. & Santamouris, M. & Asimakopoulos, D., 1994. "Use of the ground for heat dissipation," Energy, Elsevier, vol. 19(1), pages 17-25.
  • Handle: RePEc:eee:energy:v:19:y:1994:i:1:p:17-25
    DOI: 10.1016/0360-5442(94)90101-5
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0360544294901015
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0360-5442(94)90101-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Badescu, Viorel, 2007. "Simple and accurate model for the ground heat exchanger of a passive house," Renewable Energy, Elsevier, vol. 32(5), pages 845-855.
    2. Xu, Ling & Wang, Jiayu & Xiao, Feipeng & EI-Badawy, Sherif & Awed, Ahmed, 2021. "Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses," Applied Energy, Elsevier, vol. 281(C).
    3. Go, Gyu-Hyun & Lee, Seung-Rae & N.V., Nikhil & Yoon, Seok, 2015. "A new performance evaluation algorithm for horizontal GCHPs (ground coupled heat pump systems) that considers rainfall infiltration," Energy, Elsevier, vol. 83(C), pages 766-777.
    4. Florides, G.A. & Pouloupatis, P.D. & Kalogirou, S. & Messaritis, V. & Panayides, I. & Zomeni, Z. & Partasides, G. & Lizides, A. & Sophocleous, E. & Koutsoumpas, K., 2011. "The geothermal characteristics of the ground and the potential of using ground coupled heat pumps in Cyprus," Energy, Elsevier, vol. 36(8), pages 5027-5036.
    5. Rachana Vidhi, 2018. "A Review of Underground Soil and Night Sky as Passive Heat Sink: Design Configurations and Models," Energies, MDPI, vol. 11(11), pages 1-24, October.
    6. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Halkos, George & Paravantis, John & Makridis, Sofoklis & Papaefthimiou, Spiros, 2022. "Applications of earth-to-air heat exchangers: A holistic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    7. Ferrante, A. & Mihalakakou, G. & Odolini, C., 1997. "The rehabilitation investigation of a historical urban area," Renewable Energy, Elsevier, vol. 10(4), pages 577-584.
    8. Singh, Ramkishore & Sawhney, R.L. & Lazarus, I.J. & Kishore, V.V.N., 2018. "Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2162-2185.
    9. Yang, Jiachuan & Wang, Zhi-Hua & Kaloush, Kamil E., 2015. "Environmental impacts of reflective materials: Is high albedo a ‘silver bullet’ for mitigating urban heat island?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 830-843.
    10. Mihalakakou, G. & Lewis, J.O. & Santamouris, M., 1996. "The influence of different ground covers on the heating potential of earth-to-air heat exchangers," Renewable Energy, Elsevier, vol. 7(1), pages 33-46.
    11. Mihalakakou, G, 2002. "On the use of sunspace for space heating/cooling in Europe," Renewable Energy, Elsevier, vol. 26(3), pages 415-429.
    12. Peretti, Clara & Zarrella, Angelo & De Carli, Michele & Zecchin, Roberto, 2013. "The design and environmental evaluation of earth-to-air heat exchangers (EAHE). A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 107-116.
    13. Benhammou, Mohammed & Draoui, Belkacem & Hamouda, Messaoud, 2017. "Improvement of the summer cooling induced by an earth-to-air heat exchanger integrated in a residential building under hot and arid climate," Applied Energy, Elsevier, vol. 208(C), pages 428-445.
    14. Santamouris, M., 2013. "Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 224-240.
    15. Taurines, Kevin & Giroux-Julien, Stéphanie & Farid, Mohammed & Ménézo, Christophe, 2021. "Numerical modelling of a building integrated earth-to-air heat exchanger," Applied Energy, Elsevier, vol. 296(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:19:y:1994:i:1:p:17-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.