IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i11p3186-d237892.html
   My bibliography  Save this article

Parametric Optimization of Earth to Air Heat Exchanger Using Response Surface Method

Author

Listed:
  • Maoz

    (US-Pakistan Center for Advanced Studies in Energy, University of Engineering and Technology, Peshawar 814, Pakistan)

  • Saddam Ali

    (US-Pakistan Center for Advanced Studies in Energy, University of Engineering and Technology, Peshawar 814, Pakistan)

  • Noor Muhammad

    (US-Pakistan Center for Advanced Studies in Energy, University of Engineering and Technology, Peshawar 814, Pakistan)

  • Ahmad Amin

    (US-Pakistan Center for Advanced Studies in Energy, University of Engineering and Technology, Peshawar 814, Pakistan)

  • Mohammad Sohaib

    (US-Pakistan Center for Advanced Studies in Energy, University of Engineering and Technology, Peshawar 814, Pakistan)

  • Abdul Basit

    (US-Pakistan Center for Advanced Studies in Energy, University of Engineering and Technology, Peshawar 814, Pakistan)

  • Tanvir Ahmad

    (US-Pakistan Center for Advanced Studies in Energy, University of Engineering and Technology, Peshawar 814, Pakistan)

Abstract

The achievement of sustainable energy goals warrants keen interest in promoting efficient buildings and renewable energy resources. Prominent among the energy-efficient building technologies is geothermal energy, which has a significant margin for improving energy utilization related to Heat, Ventilation, and Air Conditioning (HVAC). However, the efficient extraction of geothermal energy for HVAC applications requires stringent control of geometric parameters, boundary conditions, and environmental conditions. In this study a new approach has been devised to optimize the open loop Earth to Air Heat Exchanger (EAHE) system using a statistical optimization technique i.e., Response Surface Method (RSM). The study was conducted in the soil and weather conditions of Peshawar city in Pakistan. Parametric analysis was conducted for the three influencing variables, i.e., the pipe length, diameter, and air velocity using the EAHE model. The soil model predicts temperature in the range 20–26 °C for Peshawar at a depth above 3 m. Response Surface method was used to optimize the pipe length, diameter, and air velocity of the EAHE system. Analysis of Variance (ANOVA) indicates that all the three factors are significant. The EAHE system can effectively reduce the temperature by 15–18 °C and compensate the cooling load of single room for the parameters in the ranges of 50–70 m for the length, 0.18–0.25 m for the diameter, and 5–7 ms −1 for the air velocity. A regression equation is developed to predict the cooling load for any input values of the three influencing variables according to the weather and soil conditions.

Suggested Citation

  • Maoz & Saddam Ali & Noor Muhammad & Ahmad Amin & Mohammad Sohaib & Abdul Basit & Tanvir Ahmad, 2019. "Parametric Optimization of Earth to Air Heat Exchanger Using Response Surface Method," Sustainability, MDPI, vol. 11(11), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3186-:d:237892
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/11/3186/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/11/3186/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kepes Rodrigues, Michel & da Silva Brum, Ruth & Vaz, Joaquim & Oliveira Rocha, Luiz Alberto & Domingues dos Santos, Elizaldo & Isoldi, Liércio André, 2015. "Numerical investigation about the improvement of the thermal potential of an Earth-Air Heat Exchanger (EAHE) employing the Constructal Design method," Renewable Energy, Elsevier, vol. 80(C), pages 538-551.
    2. Niu, Fuxin & Yu, Yuebin & Yu, Daihong & Li, Haorong, 2015. "Heat and mass transfer performance analysis and cooling capacity prediction of earth to air heat exchanger," Applied Energy, Elsevier, vol. 137(C), pages 211-221.
    3. Kwon Sook Park & Seiyong Kim, 2018. "Utilising Unused Energy Resources for Sustainable Heating and Cooling System in Buildings: A Case Study of Geothermal Energy and Water Sources in a University," Energies, MDPI, vol. 11(7), pages 1-8, July.
    4. Cristina Baglivo & Delia D’Agostino & Paolo Maria Congedo, 2018. "Design of a Ventilation System Coupled with a Horizontal Air-Ground Heat Exchanger (HAGHE) for a Residential Building in a Warm Climate," Energies, MDPI, vol. 11(8), pages 1-27, August.
    5. Kumar, Rakesh & Sinha, A.R. & Singh, B.K. & Modhukalya, U., 2008. "A design optimization tool of earth-to-air heat exchanger using a genetic algorithm," Renewable Energy, Elsevier, vol. 33(10), pages 2282-2288.
    6. Kumar, Rakesh & Kaushik, S.C. & Garg, S.N., 2006. "Heating and cooling potential of an earth-to-air heat exchanger using artificial neural network," Renewable Energy, Elsevier, vol. 31(8), pages 1139-1155.
    7. Singh, Ramkishore & Sawhney, R.L. & Lazarus, I.J. & Kishore, V.V.N., 2018. "Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2162-2185.
    8. Ozgener, Leyla, 2011. "A review on the experimental and analytical analysis of earth to air heat exchanger (EAHE) systems in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4483-4490.
    9. Khurshid Ahmad & Amer Farhan Rafique & Saeed Badshah, 2014. "Energy Efficient Residential Buildings in Pakistan," Energy & Environment, , vol. 25(5), pages 991-1002, July.
    10. Benhammou, Mohammed & Draoui, Belkacem, 2015. "Parametric study on thermal performance of earth-to-air heat exchanger used for cooling of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 348-355.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adriana Greco & Edison Gundabattini & Darius Gnanaraj Solomon & Raja Singh Rassiah & Claudia Masselli, 2022. "A Review on Geothermal Renewable Energy Systems for Eco-Friendly Air-Conditioning," Energies, MDPI, vol. 15(15), pages 1-17, July.
    2. Wen Zhang & Qinghe Yuan & Shun Jia & Zhaojun (Steven) Li & Xianhui Yin, 2021. "Multi-Objective Optimization of Forth Flotation Process: An Application in Gold Ore," Sustainability, MDPI, vol. 13(15), pages 1-16, July.
    3. Mushk Bughio & Swati Bahale & Waqas Ahmed Mahar & Thorsten Schuetze, 2022. "Parametric Performance Analysis of the Cooling Potential of Earth-to-Air Heat Exchangers in Hot and Humid Climates," Energies, MDPI, vol. 15(19), pages 1-21, September.
    4. Andrew Zajch & William A. Gough & Giacomo Chiesa, 2020. "Earth–Air Heat Exchanger Geo-Climatic Suitability for Projected Climate Change Scenarios in the Americas," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    5. Chong Zhang & Jinbo Wang & Liao Li & Feifei Wang & Wenjie Gang, 2020. "Utilization of Earth-to-Air Heat Exchanger to Pre-Cool/Heat Ventilation Air and Its Annual Energy Performance Evaluation: A Case Study," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    6. Kwang-Seob Lee & Eun-Chul Kang & Yu-Jin Kim & Euy-Joon Lee, 2019. "Model Verification and Justification Study of Spirally Corrugated Pipes in a Ground-Air Heat Exchanger Application," Energies, MDPI, vol. 12(21), pages 1-13, October.
    7. Vivek Aggarwal & Chandan Swaroop Meena & Ashok Kumar & Tabish Alam & Anuj Kumar & Arijit Ghosh & Aritra Ghosh, 2020. "Potential and Future Prospects of Geothermal Energy in Space Conditioning of Buildings: India and Worldwide Review," Sustainability, MDPI, vol. 12(20), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Ramkishore & Sawhney, R.L. & Lazarus, I.J. & Kishore, V.V.N., 2018. "Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2162-2185.
    2. Rachana Vidhi, 2018. "A Review of Underground Soil and Night Sky as Passive Heat Sink: Design Configurations and Models," Energies, MDPI, vol. 11(11), pages 1-24, October.
    3. Aldona Skotnicka-Siepsiak, 2020. "Operation of a Tube GAHE in Northeastern Poland in Spring and Summer—A Comparison of Real-World Data with Mathematically Modeled Data," Energies, MDPI, vol. 13(7), pages 1-15, April.
    4. Bordoloi, Namrata & Sharma, Aashish & Nautiyal, Himanshu & Goel, Varun, 2018. "An intense review on the latest advancements of Earth Air Heat Exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 261-280.
    5. Rodrigues, Michel Kepes & Vaz, Joaquim & Oliveira Rocha, Luiz Alberto & Domingues dos Santos, Elizaldo & Isoldi, Liércio André, 2022. "A full approach to Earth-Air Heat Exchanger employing computational modeling, performance analysis and geometric evaluation," Renewable Energy, Elsevier, vol. 191(C), pages 535-556.
    6. H.Ali, Mohammed & Kurjak, Zoltan & Beke, Janos, 2023. "Investigation of earth air heat exchangers functioning in arid locations using Matlab/Simulink," Renewable Energy, Elsevier, vol. 209(C), pages 632-643.
    7. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Halkos, George & Paravantis, John & Makridis, Sofoklis & Papaefthimiou, Spiros, 2022. "Applications of earth-to-air heat exchangers: A holistic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    8. Barakat, S. & Ramzy, Ahmed & Hamed, A.M. & El-Emam, S.H., 2019. "Augmentation of gas turbine performance using integrated EAHE and Fogging Inlet Air Cooling System," Energy, Elsevier, vol. 189(C).
    9. Qin, Di & Liu, Zhengxuan & Zhou, Yuekuan & Yan, Zhongjun & Chen, Dachuan & Zhang, Guoqiang, 2021. "Dynamic performance of a novel air-soil heat exchanger coupling with diversified energy storage components—modelling development, experimental verification, parametrical design and robust operation," Renewable Energy, Elsevier, vol. 167(C), pages 542-557.
    10. Bisoniya, Trilok Singh & Kumar, Anil & Baredar, Prashant, 2013. "Experimental and analytical studies of earth–air heat exchanger (EAHE) systems in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 238-246.
    11. Liu, Zhengxuan & Yu, Zhun (Jerry) & Yang, Tingting & Roccamena, Letizia & Sun, Pengcheng & Li, Shuisheng & Zhang, Guoqiang & El Mankibi, Mohamed, 2019. "Numerical modeling and parametric study of a vertical earth-to-air heat exchanger system," Energy, Elsevier, vol. 172(C), pages 220-231.
    12. Agrawal, Kamal Kumar & Misra, Rohit & Agrawal, Ghanshyam Das, 2020. "To study the effect of different parameters on the thermal performance of ground-air heat exchanger system: In situ measurement," Renewable Energy, Elsevier, vol. 146(C), pages 2070-2083.
    13. Akhtari, Mohammad Reza & Shayegh, Iman & Karimi, Nader, 2020. "Techno-economic assessment and optimization of a hybrid renewable earth - air heat exchanger coupled with electric boiler, hydrogen, wind and PV configurations," Renewable Energy, Elsevier, vol. 148(C), pages 839-851.
    14. Paolo Maria Congedo & Caterina Lorusso & Maria Grazia De Giorgi & Riccardo Marti & Delia D’Agostino, 2016. "Horizontal Air-Ground Heat Exchanger Performance and Humidity Simulation by Computational Fluid Dynamic Analysis," Energies, MDPI, vol. 9(11), pages 1-14, November.
    15. Piotr Michalak, 2022. "Impact of Air Density Variation on a Simulated Earth-to-Air Heat Exchanger’s Performance," Energies, MDPI, vol. 15(9), pages 1-24, April.
    16. Benhammou, Mohammed & Draoui, Belkacem, 2015. "Parametric study on thermal performance of earth-to-air heat exchanger used for cooling of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 348-355.
    17. Adriana Greco & Claudia Masselli, 2020. "The Optimization of the Thermal Performances of an Earth to Air Heat Exchanger for an Air Conditioning System: A Numerical Study," Energies, MDPI, vol. 13(23), pages 1-25, December.
    18. Yue, Yingjun & Yan, Zengfeng & Ni, Pingan & Lei, Fuming & Yao, Shanshan, 2024. "Machine learning-based multi-performance prediction and analysis of Earth-Air Heat Exchanger," Renewable Energy, Elsevier, vol. 227(C).
    19. Tahery, Danial & Roshandel, Ramin & Avami, Akram, 2021. "An integrated dynamic model for evaluating the influence of ground to air heat transfer system on heating, cooling and CO2 supply in Greenhouses: Considering crop transpiration," Renewable Energy, Elsevier, vol. 173(C), pages 42-56.
    20. Wang, Tao & Ma, Mengru & Ren, Zhili & Yuan, Xiaoqing & Gao, Xiangkui & Xiao, Yimin, 2024. "Numerical analysis of heat and mass transfer in separated ventilation of deeply buried long air intake tunnels," Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3186-:d:237892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.