IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v48y1994i1p19-32.html
   My bibliography  Save this article

Impact of ground cover on the efficiencies of earth-to-air heat exchangers

Author

Listed:
  • Mihalakakou, G.
  • Santamouris, M.
  • Asimakopoulos, D.
  • Papanikolaou, N.

Abstract

The influence of different ground surface boundary conditions on the efficiency of a single earth-to-air heat exchanger as well as of a multiple parallel earth tubes system has been investigated. The cooling potential of both these systems buried under bare soil has been assessed and compared with the cooling potential of the same systems buried under short-grass covered soil. The results revealed that soil surface could be a controllable factor for the improvement of the performance of earth-to-air heat exchangers. The cooling system consists of a single tube or multiple tubes, buried in the ground and through which ambient or indoor air is circulated and cooled: it is then mixed with the indoor air of a building or an agricultural greenhouse. An accurate numerical model has been used to assess the dynamic thermal performances and operational limits of the earth-to-air heat exchangers. Finally, a sensitivity investigation was carried out in order to evaluate the effect of the main design parameters on the system's cooling capacity. Cumulative frequency distributions of the air temperature at the pipe's exit have been developed as a function of the input parameters.

Suggested Citation

  • Mihalakakou, G. & Santamouris, M. & Asimakopoulos, D. & Papanikolaou, N., 1994. "Impact of ground cover on the efficiencies of earth-to-air heat exchangers," Applied Energy, Elsevier, vol. 48(1), pages 19-32.
  • Handle: RePEc:eee:appene:v:48:y:1994:i:1:p:19-32
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0306-2619(94)90064-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Pakari & Saud Ghani, 2021. "Energy Savings Resulting from Using a Near-Surface Earth-to-Air Heat Exchanger for Precooling in Hot Desert Climates," Energies, MDPI, vol. 14(23), pages 1-14, December.
    2. Chrysanthos Maraveas & Christos-Spyridon Karavas & Dimitrios Loukatos & Thomas Bartzanas & Konstantinos G. Arvanitis & Eleni Symeonaki, 2023. "Agricultural Greenhouses: Resource Management Technologies and Perspectives for Zero Greenhouse Gas Emissions," Agriculture, MDPI, vol. 13(7), pages 1-46, July.
    3. Rachana Vidhi, 2018. "A Review of Underground Soil and Night Sky as Passive Heat Sink: Design Configurations and Models," Energies, MDPI, vol. 11(11), pages 1-24, October.
    4. Singh, Ramkishore & Sawhney, R.L. & Lazarus, I.J. & Kishore, V.V.N., 2018. "Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2162-2185.
    5. Tittelein, Pierre & Achard, Gilbert & Wurtz, Etienne, 2009. "Modelling earth-to-air heat exchanger behaviour with the convolutive response factors method," Applied Energy, Elsevier, vol. 86(9), pages 1683-1691, September.
    6. Adriana Greco & Claudia Masselli, 2020. "The Optimization of the Thermal Performances of an Earth to Air Heat Exchanger for an Air Conditioning System: A Numerical Study," Energies, MDPI, vol. 13(23), pages 1-25, December.
    7. Agrawal, Kamal Kumar & Misra, Rohit & Yadav, Tejpal & Agrawal, Ghanshyam Das & Jamuwa, Doraj Kamal, 2018. "Experimental study to investigate the effect of water impregnation on thermal performance of earth air tunnel heat exchanger for summer cooling in hot and arid climate," Renewable Energy, Elsevier, vol. 120(C), pages 255-265.
    8. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Halkos, George & Paravantis, John & Makridis, Sofoklis & Papaefthimiou, Spiros, 2022. "Applications of earth-to-air heat exchangers: A holistic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    9. Wei, Haibin & Yang, Dong & Wang, Jilibo & Du, Jinhui, 2020. "Field experiments on the cooling capability of earth-to-air heat exchangers in hot and humid climate," Applied Energy, Elsevier, vol. 276(C).
    10. Badescu, Viorel & Isvoranu, Dragos, 2011. "Pneumatic and thermal design procedure and analysis of earth-to-air heat exchangers of registry type," Applied Energy, Elsevier, vol. 88(4), pages 1266-1280, April.
    11. Ahmed, S.F. & Khan, M.M.K. & Amanullah, M.T.O. & Rasul, M.G. & Hassan, N.M.S., 2021. "A parametric analysis of the cooling performance of vertical earth-air heat exchanger in a subtropical climate," Renewable Energy, Elsevier, vol. 172(C), pages 350-367.
    12. Taurines, Kevin & Giroux-Julien, Stéphanie & Farid, Mohammed & Ménézo, Christophe, 2021. "Numerical modelling of a building integrated earth-to-air heat exchanger," Applied Energy, Elsevier, vol. 296(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:48:y:1994:i:1:p:19-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.