IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p2936-d178710.html
   My bibliography  Save this article

Analytical Enzymatic Saccharification of Lignocellulosic Biomass for Conversion to Biofuels and Bio-Based Chemicals

Author

Listed:
  • Madhavi Latha Gandla

    (Department of Chemistry, KBC Chemical-Biological Centre, Umeå University, SE-901 87 Umeå, Sweden)

  • Carlos Martín

    (Department of Chemistry, KBC Chemical-Biological Centre, Umeå University, SE-901 87 Umeå, Sweden)

  • Leif J. Jönsson

    (Department of Chemistry, KBC Chemical-Biological Centre, Umeå University, SE-901 87 Umeå, Sweden)

Abstract

Lignocellulosic feedstocks are an important resource for biorefining of renewables to bio-based fuels, chemicals, and materials. Relevant feedstocks include energy crops, residues from agriculture and forestry, and agro-industrial and forest-industrial residues. The feedstocks differ with respect to their recalcitrance to bioconversion through pretreatment and enzymatic saccharification, which will produce sugars that can be further converted to advanced biofuels and other products through microbial fermentation processes. In analytical enzymatic saccharification, the susceptibility of lignocellulosic samples to pretreatment and enzymatic saccharification is assessed in analytical scale using high-throughput or semi-automated techniques. This type of analysis is particularly relevant for screening of large collections of natural or transgenic varieties of plants that are dedicated to production of biofuels or other bio-based chemicals. In combination with studies of plant physiology and cell wall chemistry, analytical enzymatic saccharification can provide information about the fundamental reasons behind lignocellulose recalcitrance as well as about the potential of collections of plants or different fractions of plants for industrial biorefining. This review is focused on techniques used by researchers for screening the susceptibility of plants to pretreatment and enzymatic saccharification, and advantages and disadvantages that are associated with different approaches.

Suggested Citation

  • Madhavi Latha Gandla & Carlos Martín & Leif J. Jönsson, 2018. "Analytical Enzymatic Saccharification of Lignocellulosic Biomass for Conversion to Biofuels and Bio-Based Chemicals," Energies, MDPI, vol. 11(11), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2936-:d:178710
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/2936/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/2936/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nuwong Chollacoop & Peerawat Saisirirat & Tuenjai Fukuda & Atsushi Fukuda, 2011. "Scenario Analyses of Road Transport Energy Demand: A Case Study of Ethanol as a Diesel Substitute in Thailand," Energies, MDPI, vol. 4(1), pages 1-18, January.
    2. Manochio, C. & Andrade, B.R. & Rodriguez, R.P. & Moraes, B.S., 2017. "Ethanol from biomass: A comparative overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 743-755.
    3. Katharine Sanderson, 2011. "Lignocellulose: A chewy problem," Nature, Nature, vol. 474(7352), pages 12-14, June.
    4. Ruiz, Héctor A. & Rodríguez-Jasso, Rosa M. & Fernandes, Bruno D. & Vicente, António A. & Teixeira, José A., 2013. "Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 35-51.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristhian Carrasco & Leif J. Jönsson & Carlos Martín, 2021. "Hydrothermal Pretreatment of Water-Extracted and Aqueous Ethanol-Extracted Quinoa Stalks for Enzymatic Saccharification of Cellulose," Energies, MDPI, vol. 14(14), pages 1-14, July.
    2. Anu, & Kumar, Anil & Jain, Kavish Kumar & Singh, Bijender, 2020. "Process optimization for chemical pretreatment of rice straw for bioethanol production," Renewable Energy, Elsevier, vol. 156(C), pages 1233-1243.
    3. Vitor B. Furlong & Luciano J. Corrêa & Roberto C. Giordano & Marcelo P. A. Ribeiro, 2019. "Fuzzy-Enhanced Modeling of Lignocellulosic Biomass Enzymatic Saccharification," Energies, MDPI, vol. 12(11), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tuan Hoang, Anh & Viet Pham, Van, 2021. "2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Dennis Dreier & Mark Howells, 2019. "OSeMOSYS-PuLP: A Stochastic Modeling Framework for Long-Term Energy Systems Modeling," Energies, MDPI, vol. 12(7), pages 1-26, April.
    3. Umanath Malaiarasan & R. Paramasivam & K. Thomas Felix & S. J. Balaji, 2020. "Simultaneous equation model for Indian sugar sector," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 22(1), pages 113-141, June.
    4. Tahir H. Seehar & Saqib S. Toor & Ayaz A. Shah & Thomas H. Pedersen & Lasse A. Rosendahl, 2020. "Biocrude Production from Wheat Straw at Sub and Supercritical Hydrothermal Liquefaction," Energies, MDPI, vol. 13(12), pages 1-18, June.
    5. Kouteu Nanssou, Paul Alain & Jiokap Nono, Yvette & Kapseu, César, 2016. "Pretreatment of cassava stems and peelings by thermohydrolysis to enhance hydrolysis yield of cellulose in bioethanol production process," Renewable Energy, Elsevier, vol. 97(C), pages 252-265.
    6. Nariê Rinke Dias de Souza & Bruno Colling Klein & Mateus Ferreira Chagas & Otavio Cavalett & Antonio Bonomi, 2021. "Towards Comparable Carbon Credits: Harmonization of LCA Models of Cellulosic Biofuels," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    7. Corton, J. & Donnison, I.S. & Ross, A.B. & Lea-Langton, A.R. & Wachendorf, M. & Fraser, M.D., 2021. "Impact of vegetation type and pre-processing on product yields and properties following hydrothermal conversion of conservation biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    8. Nanda, Sonil & Azargohar, Ramin & Dalai, Ajay K. & Kozinski, Janusz A., 2015. "An assessment on the sustainability of lignocellulosic biomass for biorefining," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 925-941.
    9. Wu, Horng-Wen & Lin, Ke-Wei, 2019. "Hydrogen-rich syngas production by reforming of ethanol blended with aqueous urea using a thermodynamic analysis," Energy, Elsevier, vol. 166(C), pages 541-551.
    10. da Silva, Francinaldo Leite & de Oliveira Campos, Alan & dos Santos, Davi Alves & Batista Magalhães, Emilianny Rafaely & de Macedo, Gorete Ribeiro & dos Santos, Everaldo Silvino, 2018. "Valorization of an agroextractive residue—Carnauba straw—for the production of bioethanol by simultaneous saccharification and fermentation (SSF)," Renewable Energy, Elsevier, vol. 127(C), pages 661-669.
    11. Cuevas, Manuel & Sánchez, Sebastián & García, Juan F. & Baeza, Jaime & Parra, Carolina & Freer, Juanita, 2015. "Enhanced ethanol production by simultaneous saccharification and fermentation of pretreated olive stones," Renewable Energy, Elsevier, vol. 74(C), pages 839-847.
    12. Giacomo Fabbrizi & Tommaso Giannoni & Leonardo Lorenzi & Andrea Nicolini & Paola Iodice & Valentina Coccia & Gianluca Cavalaglio & Mattia Gelosia, 2022. "High Solid and Low Cellulase Enzymatic Hydrolysis of Cardoon Stems Pretreated by Acidified γ-Valerolactone/Water Solution," Energies, MDPI, vol. 15(7), pages 1-12, April.
    13. Mazen A. Eldeeb & Benjamin Akih-Kumgeh, 2018. "Recent Trends in the Production, Combustion and Modeling of Furan-Based Fuels," Energies, MDPI, vol. 11(3), pages 1-47, February.
    14. Paola Sakai & Stavros Afionis & Nicola Favretto & Lindsay C. Stringer & Caroline Ward & Marco Sakai & Pedro Henrique Weirich Neto & Carlos Hugo Rocha & Jaime Alberti Gomes & Nátali Maidl de Souza & No, 2020. "Understanding the Implications of Alternative Bioenergy Crops to Support Smallholder Farmers in Brazil," Sustainability, MDPI, vol. 12(5), pages 1-22, March.
    15. Surup, Gerrit Ralf & Hunt, Andrew J. & Attard, Thomas & Budarin, Vitaliy L. & Forsberg, Fredrik & Arshadi, Mehrdad & Abdelsayed, Victor & Shekhawat, Dushyant & Trubetskaya, Anna, 2020. "The effect of wood composition and supercritical CO2 extraction on charcoal production in ferroalloy industries," Energy, Elsevier, vol. 193(C).
    16. Kamila Przybysz & Edyta Małachowska & Danuta Martyniak & Piotr Boruszewski & Halina Kalinowska & Piotr Przybysz, 2019. "Production of Sugar Feedstocks for Fermentation Processes from Selected Fast Growing Grasses," Energies, MDPI, vol. 12(16), pages 1-12, August.
    17. Rita H. R. Branco & Mariana S. T. Amândio & Luísa S. Serafim & Ana M. R. B. Xavier, 2020. "Ethanol Production from Hydrolyzed Kraft Pulp by Mono- and Co-Cultures of Yeasts: The Challenge of C6 and C5 Sugars Consumption," Energies, MDPI, vol. 13(3), pages 1-15, February.
    18. Franco Cotana & Gianluca Cavalaglio & Anna Laura Pisello & Mattia Gelosia & David Ingles & Enrico Pompili, 2015. "Sustainable Ethanol Production from Common Reed ( Phragmites australis ) through Simultaneuos Saccharification and Fermentation," Sustainability, MDPI, vol. 7(9), pages 1-15, September.
    19. Terneus Páez, Carlos Francisco & Viteri Salazar, Oswaldo, 2021. "Analysis of biofuel production in Ecuador from the perspective of the water-food-energy nexus," Energy Policy, Elsevier, vol. 157(C).
    20. Marcela Sofia Pino & Michele Michelin & Rosa M. Rodríguez-Jasso & Alfredo Oliva-Taravilla & José A. Teixeira & Héctor A. Ruiz, 2021. "Hot Compressed Water Pretreatment and Surfactant Effect on Enzymatic Hydrolysis Using Agave Bagasse," Energies, MDPI, vol. 14(16), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2936-:d:178710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.