IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v21y2013icp35-51.html
   My bibliography  Save this article

Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: A review

Author

Listed:
  • Ruiz, Héctor A.
  • Rodríguez-Jasso, Rosa M.
  • Fernandes, Bruno D.
  • Vicente, António A.
  • Teixeira, José A.

Abstract

The concept of a biorefinery that integrates processes and technologies for biomass conversion demands efficient utilization of all components. Hydrothermal processing is a potential clean technology to convert raw materials such as lignocellulosic materials and aquatic biomass into bioenergy and high added-value chemicals. In this technology, water at high temperatures and pressures is applied for hydrolysis, extraction and structural modification of materials. This review is focused on providing an updated overview on the fundamentals, modelling, separation and applications of the main components of lignocellulosic materials and conversion of aquatic biomass (macro- and micro- algae) into value-added products.

Suggested Citation

  • Ruiz, Héctor A. & Rodríguez-Jasso, Rosa M. & Fernandes, Bruno D. & Vicente, António A. & Teixeira, José A., 2013. "Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 35-51.
  • Handle: RePEc:eee:rensus:v:21:y:2013:i:c:p:35-51
    DOI: 10.1016/j.rser.2012.11.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112006831
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.11.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cherubini, Francesco & Ulgiati, Sergio, 2010. "Crop residues as raw materials for biorefinery systems - A LCA case study," Applied Energy, Elsevier, vol. 87(1), pages 47-57, January.
    2. Shen, Zheng & Zhou, Jingfei & Zhou, Xuefei & Zhang, Yalei, 2011. "The production of acetic acid from microalgae under hydrothermal conditions," Applied Energy, Elsevier, vol. 88(10), pages 3444-3447.
    3. Littlewood, Jade & Murphy, Richard J. & Wang, Lei, 2013. "Importance of policy support and feedstock prices on economic feasibility of bioethanol production from wheat straw in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 291-300.
    4. Shuping, Zou & Yulong, Wu & Mingde, Yang & Kaleem, Imdad & Chun, Li & Tong, Junmao, 2010. "Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake," Energy, Elsevier, vol. 35(12), pages 5406-5411.
    5. Mesa, Leyanis & González, Erenio & Ruiz, Encarnación & Romero, Inmaculada & Cara, Cristóbal & Felissia, Fernando & Castro, Eulogio, 2010. "Preliminary evaluation of organosolv pre-treatment of sugar cane bagasse for glucose production: Application of 23 experimental design," Applied Energy, Elsevier, vol. 87(1), pages 109-114, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Lei & Littlewood, Jade & Murphy, Richard J., 2013. "Environmental sustainability of bioethanol production from wheat straw in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 715-725.
    2. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    4. Liu, Junhai & Zhuang, Yingbin & Li, Yan & Chen, Limei & Guo, Jingxue & Li, Demao & Ye, Naihao, 2013. "Optimizing the conditions for the microwave-assisted direct liquefaction of Ulva prolifera for bio-oil production using response surface methodology," Energy, Elsevier, vol. 60(C), pages 69-76.
    5. Sánchez, S. & Lozano, L.J. & Godínez, C. & Juan, D. & Pérez, A. & Hernández, F.J., 2010. "Carob pod as a feedstock for the production of bioethanol in Mediterranean areas," Applied Energy, Elsevier, vol. 87(11), pages 3417-3424, November.
    6. Khoo, Hsien H., 2015. "Review of bio-conversion pathways of lignocellulose-to-ethanol: Sustainability assessment based on land footprint projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 100-119.
    7. Michael Kröger & Marco Klemm & Michael Nelles, 2018. "Hydrothermal Disintegration and Extraction of Different Microalgae Species," Energies, MDPI, vol. 11(2), pages 1-13, February.
    8. Huang, Yu-Fong & Chiueh, Pei-Te & Kuan, Wen-Hui & Lo, Shang-Lien, 2016. "Microwave pyrolysis of lignocellulosic biomass: Heating performance and reaction kinetics," Energy, Elsevier, vol. 100(C), pages 137-144.
    9. Brand, Steffen & Hardi, Flabianus & Kim, Jaehoon & Suh, Dong Jin, 2014. "Effect of heating rate on biomass liquefaction: Differences between subcritical water and supercritical ethanol," Energy, Elsevier, vol. 68(C), pages 420-427.
    10. Sharma, Nishesh & Jaiswal, Krishna Kumar & Kumar, Vinod & Vlaskin, Mikhail S. & Nanda, Manisha & Rautela, Indra & Tomar, Mahipal Singh & Ahmad, Waseem, 2021. "Effect of catalyst and temperature on the quality and productivity of HTL bio-oil from microalgae: A review," Renewable Energy, Elsevier, vol. 174(C), pages 810-822.
    11. Tahereh Soleymani Angili & Katarzyna Grzesik & Anne Rödl & Martin Kaltschmitt, 2021. "Life Cycle Assessment of Bioethanol Production: A Review of Feedstock, Technology and Methodology," Energies, MDPI, vol. 14(10), pages 1-18, May.
    12. Kasivisvanathan, Harresh & Barilea, Ivan Dale U. & Ng, Denny K.S. & Tan, Raymond R., 2013. "Optimal operational adjustment in multi-functional energy systems in response to process inoperability," Applied Energy, Elsevier, vol. 102(C), pages 492-500.
    13. Xu, Donghai & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Guo, Yang & Jing, Zefeng, 2018. "Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 103-118.
    14. Hammond, Geoffrey P. & Mansell, Ross V.M., 2018. "A comparative thermodynamic evaluation of bioethanol processing from wheat straw," Applied Energy, Elsevier, vol. 224(C), pages 136-146.
    15. Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
    16. Söyler, Nejmi & Goldfarb, Jillian L. & Ceylan, Selim & Saçan, Melek Türker, 2017. "Renewable fuels from pyrolysis of Dunaliella tertiolecta: An alternative approach to biochemical conversions of microalgae," Energy, Elsevier, vol. 120(C), pages 907-914.
    17. Hoang-Tuong Nguyen Hao & Obulisamy Parthiba Karthikeyan & Kirsten Heimann, 2015. "Bio-Refining of Carbohydrate-Rich Food Waste for Biofuels," Energies, MDPI, vol. 8(7), pages 1-15, June.
    18. Hoekman, S. Kent & Broch, Amber, 2018. "Environmental implications of higher ethanol production and use in the U.S.: A literature review. Part II – Biodiversity, land use change, GHG emissions, and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3159-3177.
    19. Maung, Thein A. & Gustafson, Cole R. & Saxowsky, David M. & Nowatzki, John & Miljkovic, Tatjana & Ripplinger, David, 2013. "The logistics of supplying single vs. multi-crop cellulosic feedstocks to a biorefinery in southeast North Dakota," Applied Energy, Elsevier, vol. 109(C), pages 229-238.
    20. Lin, Kuang C. & Lin, Yuan-Chung & Hsiao, Yi-Hsing, 2014. "Microwave plasma studies of Spirulina algae pyrolysis with relevance to hydrogen production," Energy, Elsevier, vol. 64(C), pages 567-574.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:21:y:2013:i:c:p:35-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.