IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3114-d372280.html
   My bibliography  Save this article

Biocrude Production from Wheat Straw at Sub and Supercritical Hydrothermal Liquefaction

Author

Listed:
  • Tahir H. Seehar

    (Department of Energy Technology, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg, Denmark
    Department of Energy & Environment Engineering, Dawood University of Engineering & Technology, New M. A. Jinnah Road, Jamshed Quarters Muslimabad, Karachi, Sindh 74800, Pakistan)

  • Saqib S. Toor

    (Department of Energy Technology, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg, Denmark)

  • Ayaz A. Shah

    (Department of Energy Technology, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg, Denmark
    Department of Energy & Environment Engineering, Dawood University of Engineering & Technology, New M. A. Jinnah Road, Jamshed Quarters Muslimabad, Karachi, Sindh 74800, Pakistan)

  • Thomas H. Pedersen

    (Department of Energy Technology, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg, Denmark)

  • Lasse A. Rosendahl

    (Department of Energy Technology, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg, Denmark)

Abstract

In this study, hydrothermal liquefaction (HTL) of wheat straw (WS) in sub (350 °C) and supercritical (400 °C) water with and without alkali catalyst was performed to investigate the potential of WS for the production of biocrude. The influences of temperature and catalyst were studied for the HTL products. Results showed that maximum biocrude yield (32.34 wt. %) with least solid residue (4.34 wt. %) was obtained at subcritical catalytic condition, whereas the carbon content was slightly higher in biocrude at supercritical. The higher heating value (HHV) for biocrude is around 35 MJ/kg for all four conditions. The major compounds in biocrude were observed as ketones, alcohols, acids, and hydrocarbons. At 350 °C, 44–55% of the carbon recovered into biocrude. The products were characterized in terms of elemental composition, higher heating values, organics, and inorganic compounds in different phases. To keep in consideration the scale-up of HTL process for continuous plant, aqueous phase from HTL was also recirculated which showed the fruitful outcomes by increasing the biocrude yield at each cycle.

Suggested Citation

  • Tahir H. Seehar & Saqib S. Toor & Ayaz A. Shah & Thomas H. Pedersen & Lasse A. Rosendahl, 2020. "Biocrude Production from Wheat Straw at Sub and Supercritical Hydrothermal Liquefaction," Energies, MDPI, vol. 13(12), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3114-:d:372280
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3114/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3114/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Zhe & Toor, Saqib Sohail & Rosendahl, Lasse & Yu, Donghong & Chen, Guanyi, 2015. "Influence of alkali catalyst on product yield and properties via hydrothermal liquefaction of barley straw," Energy, Elsevier, vol. 80(C), pages 284-292.
    2. Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.
    3. Ranjan, Amrita & Khanna, Swati & Moholkar, V.S., 2013. "Feasibility of rice straw as alternate substrate for biobutanol production," Applied Energy, Elsevier, vol. 103(C), pages 32-38.
    4. Pedersen, T.H. & Grigoras, I.F. & Hoffmann, J. & Toor, S.S. & Daraban, I.M. & Jensen, C.U. & Iversen, S.B. & Madsen, R.B. & Glasius, M. & Arturi, K.R. & Nielsen, R.P. & Søgaard, E.G. & Rosendahl, L.A., 2016. "Continuous hydrothermal co-liquefaction of aspen wood and glycerol with water phase recirculation," Applied Energy, Elsevier, vol. 162(C), pages 1034-1041.
    5. Toor, Saqib Sohail & Rosendahl, Lasse & Rudolf, Andreas, 2011. "Hydrothermal liquefaction of biomass: A review of subcritical water technologies," Energy, Elsevier, vol. 36(5), pages 2328-2342.
    6. Daniele Castello & Thomas Helmer Pedersen & Lasse Aistrup Rosendahl, 2018. "Continuous Hydrothermal Liquefaction of Biomass: A Critical Review," Energies, MDPI, vol. 11(11), pages 1-35, November.
    7. Zhu, Zhe & Rosendahl, Lasse & Toor, Saqib Sohail & Yu, Donghong & Chen, Guanyi, 2015. "Hydrothermal liquefaction of barley straw to bio-crude oil: Effects of reaction temperature and aqueous phase recirculation," Applied Energy, Elsevier, vol. 137(C), pages 183-192.
    8. Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
    9. Akhtar, Javaid & Kuang, Soo Kim & Amin, NorAishah Saidina, 2010. "Liquefaction of empty palm fruit bunch (EPFB) in alkaline hot compressed water," Renewable Energy, Elsevier, vol. 35(6), pages 1220-1227.
    10. Akhtar, Javaid & Amin, Nor Aishah Saidina, 2011. "A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1615-1624, April.
    11. Tian, Shuang-Qi & Zhao, Ren-Yong & Chen, Zhi-Cheng, 2018. "Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 483-489.
    12. Ayaz A. Shah & Saqib S. Toor & Tahir H. Seehar & Rasmus S. Nielsen & Asbjørn H. Nielsen & Thomas H. Pedersen & Lasse A. Rosendahl, 2020. "Bio-Crude Production through Aqueous Phase Recycling of Hydrothermal Liquefaction of Sewage Sludge," Energies, MDPI, vol. 13(2), pages 1-18, January.
    13. Ruiz, Héctor A. & Rodríguez-Jasso, Rosa M. & Fernandes, Bruno D. & Vicente, António A. & Teixeira, José A., 2013. "Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 35-51.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahbeik, Hossein & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Hosseinzadeh-Bandbafha, Homa & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, , 2024. "Biomass to biofuels using hydrothermal liquefaction: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Kim, Seong-Ju & Kim, Ga-Hee & Um, Byung-Hwan, 2022. "Use of an alkaline catalyst with ethanol-water as a co-solvent in the hydrothermal liquefaction of the Korean native kenaf: An analysis of the light oil and heavy oil characteristics," Energy, Elsevier, vol. 249(C).
    3. Pelosin, Primavera & Longhin, Francesco & Hansen, Nikolaj Bisgaard & Lamagni, Paolo & Drazevic, Emil & Benito, Patricia & Anastasakis, Konstantinos & Catalano, Jacopo, 2024. "High-temperature high-pressure electrochemical hydrogenation of biocrude oil," Renewable Energy, Elsevier, vol. 222(C).
    4. Kamaldeep Sharma & Ayaz A. Shah & Saqib S. Toor & Tahir H. Seehar & Thomas H. Pedersen & Lasse A. Rosendahl, 2021. "Co-Hydrothermal Liquefaction of Lignocellulosic Biomass in Supercritical Water," Energies, MDPI, vol. 14(6), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamaldeep Sharma & Ayaz A. Shah & Saqib S. Toor & Tahir H. Seehar & Thomas H. Pedersen & Lasse A. Rosendahl, 2021. "Co-Hydrothermal Liquefaction of Lignocellulosic Biomass in Supercritical Water," Energies, MDPI, vol. 14(6), pages 1-13, March.
    2. Shahbeik, Hossein & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Hosseinzadeh-Bandbafha, Homa & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, , 2024. "Biomass to biofuels using hydrothermal liquefaction: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Ankit Mathanker & Snehlata Das & Deepak Pudasainee & Monir Khan & Amit Kumar & Rajender Gupta, 2021. "A Review of Hydrothermal Liquefaction of Biomass for Biofuels Production with a Special Focus on the Effect of Process Parameters, Co-Solvents, and Extraction Solvents," Energies, MDPI, vol. 14(16), pages 1-60, August.
    4. Yang, Jie & (Sophia) He, Quan & Yang, Linxi, 2019. "A review on hydrothermal co-liquefaction of biomass," Applied Energy, Elsevier, vol. 250(C), pages 926-945.
    5. Daniele Castello & Thomas Helmer Pedersen & Lasse Aistrup Rosendahl, 2018. "Continuous Hydrothermal Liquefaction of Biomass: A Critical Review," Energies, MDPI, vol. 11(11), pages 1-35, November.
    6. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
    8. Ayaz Ali Shah & Saqib Sohail Toor & Asbjørn Haaning Nielsen & Thomas Helmer Pedersen & Lasse Aistrup Rosendahl, 2021. "Bio-Crude Production through Recycling of Pretreated Aqueous Phase via Activated Carbon," Energies, MDPI, vol. 14(12), pages 1-20, June.
    9. Déniel, Maxime & Haarlemmer, Geert & Roubaud, Anne & Weiss-Hortala, Elsa & Fages, Jacques, 2016. "Energy valorisation of food processing residues and model compounds by hydrothermal liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1632-1652.
    10. Ayaz A. Shah & Saqib S. Toor & Tahir H. Seehar & Rasmus S. Nielsen & Asbjørn H. Nielsen & Thomas H. Pedersen & Lasse A. Rosendahl, 2020. "Bio-Crude Production through Aqueous Phase Recycling of Hydrothermal Liquefaction of Sewage Sludge," Energies, MDPI, vol. 13(2), pages 1-18, January.
    11. Komeil Kohansal & Kamaldeep Sharma & Saqib Sohail Toor & Eliana Lozano Sanchez & Joscha Zimmermann & Lasse Aistrup Rosendahl & Thomas Helmer Pedersen, 2021. "Bio-Crude Production Improvement during Hydrothermal Liquefaction of Biopulp by Simultaneous Application of Alkali Catalysts and Aqueous Phase Recirculation," Energies, MDPI, vol. 14(15), pages 1-21, July.
    12. Genel, Salih & Durak, Halil & Durak, Emre Demirer & Güneş, Hasret & Genel, Yaşar, 2023. "Hydrothermal liquefaction of biomass with molybdenum, aluminum, cobalt metal powder catalysts and evaluation of wastewater by fungus cultivation," Renewable Energy, Elsevier, vol. 203(C), pages 20-32.
    13. Liu, Quan & Zhang, Guanyu & Liu, Mingyang & Kong, Ge & Xu, Ruolan & Han, Lujia & Zhang, Xuesong, 2022. "Fast hydrothermal liquefaction coupled with homogeneous catalysts to valorize livestock manure for enhanced biocrude oil and hydrochar production," Renewable Energy, Elsevier, vol. 198(C), pages 521-533.
    14. Nikolaos Montesantos & Marco Maschietti, 2020. "Supercritical Carbon Dioxide Extraction of Lignocellulosic Bio-Oils: The Potential of Fuel Upgrading and Chemical Recovery," Energies, MDPI, vol. 13(7), pages 1-35, April.
    15. Bi, Zheting & Zhang, Ji & Zhu, Zeying & Liang, Yanna & Wiltowski, Tomasz, 2018. "Generating biocrude from partially defatted Cryptococcus curvatus yeast residues through catalytic hydrothermal liquefaction," Applied Energy, Elsevier, vol. 209(C), pages 435-444.
    16. Wang, Haoyu & Han, Xue & Zeng, Yimin & Xu, Chunbao Charles, 2023. "Development of a global kinetic model based on chemical compositions of lignocellulosic biomass for predicting product yields from hydrothermal liquefaction," Renewable Energy, Elsevier, vol. 215(C).
    17. Attada Yerrayya & A. K. Shree Vishnu & S. Shreyas & S. R. Chakravarthy & Ravikrishnan Vinu, 2020. "Hydrothermal Liquefaction of Rice Straw Using Methanol as Co-Solvent," Energies, MDPI, vol. 13(10), pages 1-19, May.
    18. Ahmad, Fiaz & Silva, Edson Luiz & Varesche, Maria Bernadete Amâncio, 2018. "Hydrothermal processing of biomass for anaerobic digestion – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 108-124.
    19. Siyuan Yin & Nianze Zhang & Chunyan Tian & Weiming Yi & Qiaoxia Yuan & Peng Fu & Yuchun Zhang & Zhiyu Li, 2021. "Effect of Accumulative Recycling of Aqueous Phase on the Properties of Hydrothermal Degradation of Dry Biomass and Bio-Crude Oil Formation," Energies, MDPI, vol. 14(2), pages 1-19, January.
    20. SundarRajan, P. & Gopinath, K.P. & Arun, J. & GracePavithra, K. & Adithya Joseph, A. & Manasa, S., 2021. "Insights into valuing the aqueous phase derived from hydrothermal liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3114-:d:372280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.