IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2110-d236457.html
   My bibliography  Save this article

Fuzzy-Enhanced Modeling of Lignocellulosic Biomass Enzymatic Saccharification

Author

Listed:
  • Vitor B. Furlong

    (Chemical Engineering Department, Federal University of São Carlos, P.O. Box 676, São Carlos 13565-905, SP, Brazil)

  • Luciano J. Corrêa

    (Department of Engineering, Federal University of Lavras, P.O. Box 3037, Lavras 37200-000, MG, Brazil)

  • Roberto C. Giordano

    (Chemical Engineering Department, Federal University of São Carlos, P.O. Box 676, São Carlos 13565-905, SP, Brazil)

  • Marcelo P. A. Ribeiro

    (Chemical Engineering Department, Federal University of São Carlos, P.O. Box 676, São Carlos 13565-905, SP, Brazil)

Abstract

The enzymatic hydrolysis of lignocellulosic biomass incorporates many physico-chemical phenomena, in a heterogeneous and complex media. In order to make the modeling task feasible, many simplifications must be assumed. Hence, different simplified models, such as Michaelis-Menten and Langmuir-based ones, have been used to describe batch processes. However, these simple models have difficulties in predicting fed-batch operations with different feeding policies. To overcome this problem and avoid an increase in the complexity of the model by incorporating other phenomenological terms, a Takagi-Sugeno Fuzzy approach has been proposed, which manages a consortium of different simple models for this process. Pretreated sugar cane bagasse was used as biomass in this case study. The fuzzy rule combines two Michaelis-Menten-based models, each responsible for describing the reaction path for a distinct range of solids concentrations in the reactor. The fuzzy model improved fitting and increased prediction in a validation data set.

Suggested Citation

  • Vitor B. Furlong & Luciano J. Corrêa & Roberto C. Giordano & Marcelo P. A. Ribeiro, 2019. "Fuzzy-Enhanced Modeling of Lignocellulosic Biomass Enzymatic Saccharification," Energies, MDPI, vol. 12(11), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2110-:d:236457
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2110/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2110/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rafał Łukajtis & Piotr Rybarczyk & Karolina Kucharska & Donata Konopacka-Łyskawa & Edyta Słupek & Katarzyna Wychodnik & Marian Kamiński, 2018. "Optimization of Saccharification Conditions of Lignocellulosic Biomass under Alkaline Pre-Treatment and Enzymatic Hydrolysis," Energies, MDPI, vol. 11(4), pages 1-27, April.
    2. Madhavi Latha Gandla & Carlos Martín & Leif J. Jönsson, 2018. "Analytical Enzymatic Saccharification of Lignocellulosic Biomass for Conversion to Biofuels and Bio-Based Chemicals," Energies, MDPI, vol. 11(11), pages 1-20, October.
    3. Dantas, Guilherme A. & Legey, Luiz F.L. & Mazzone, Antonella, 2013. "Energy from sugarcane bagasse in Brazil: An assessment of the productivity and cost of different technological routes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 356-364.
    4. Rastogi, Meenal & Shrivastava, Smriti, 2017. "Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 330-340.
    5. Rossana Liguori & Carlos Ricardo Soccol & Luciana Porto de Souza Vandenberghe & Adenise Lorenci Woiciechowski & Vincenza Faraco, 2015. "Second Generation Ethanol Production from Brewers’ Spent Grain," Energies, MDPI, vol. 8(4), pages 1-12, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Guang & Wang, Jianlong, 2018. "Various additives for improving dark fermentative hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 130-146.
    2. Dhiman, Saurabh Sudha & David, Aditi & Braband, Vanessa W. & Hussein, Abdulmenan & Salem, David R. & Sani, Rajesh K., 2017. "Improved bioethanol production from corn stover: Role of enzymes, inducers and simultaneous product recovery," Applied Energy, Elsevier, vol. 208(C), pages 1420-1429.
    3. Machado, R.L. & Abreu, M.R., 2024. "Multi-objective optimization of the first and second-generation ethanol supply chain in Brazil using the water-energy-food-land nexus approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    4. Cervi, Walter Rossi & Lamparelli, Rubens Augusto Camargo & Seabra, Joaquim Eugênio Abel & Junginger, Martin & van der Hilst, Floor, 2020. "Spatial assessment of the techno-economic potential of bioelectricity production from sugarcane straw," Renewable Energy, Elsevier, vol. 156(C), pages 1313-1324.
    5. Sahar Safarian & Seyed Mohammad Ebrahimi Saryazdi & Runar Unnthorsson & Christiaan Richter, 2021. "Artificial Neural Network Modeling of Bioethanol Production Via Syngas Fermentation," Biophysical Economics and Resource Quality, Springer, vol. 6(1), pages 1-13, March.
    6. Sofía Sampaolesi & Laura Estefanía Briand & Mario Carlos Nazareno Saparrat & María Victoria Toledo, 2023. "Potentials of Biomass Waste Valorization: Case of South America," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    7. Merve Nazli Borand & Asli Isler Kaya & Filiz Karaosmanoglu, 2020. "Saccharification Yield through Enzymatic Hydrolysis of the Steam-Exploded Pinewood," Energies, MDPI, vol. 13(17), pages 1-12, September.
    8. Holmatov, B. & Schyns, J.F. & Krol, M.S. & Gerbens-Leenes, P.W. & Hoekstra, A.Y., 2021. "Can crop residues provide fuel for future transport? Limited global residue bioethanol potentials and large associated land, water and carbon footprints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Motta, Ingrid Lopes & Miranda, Nahieh Toscano & Maciel Filho, Rubens & Wolf Maciel, Maria Regina, 2018. "Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 998-1023.
    10. Singh, Saurabh & Morya, Raj & Jaiswal, Durgesh Kumar & Keerthana, S. & Kim, Sang-Hyoun & Manimekalai, R. & Prudêncio de Araujo Pereira, Arthur & Verma, Jay Prakash, 2024. "Innovations and advances in enzymatic deconstruction of biomass and their sustainability analysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    11. Gupte, Ameya Pankaj & Basaglia, Marina & Casella, Sergio & Favaro, Lorenzo, 2022. "Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Silva-Martínez, Rodolfo Daniel & Sanches-Pereira, Alessandro & Ortiz, Willington & Gómez Galindo, Maria Fernanda & Coelho, Suani Teixeira, 2020. "The state-of-the-art of organic waste to energy in Latin America and the Caribbean: Challenges and opportunities," Renewable Energy, Elsevier, vol. 156(C), pages 509-525.
    13. Mayer, Flávio Dias & Feris, Liliana Amaral & Marcilio, Nilson Romeu & Hoffmann, Ronaldo, 2015. "Why small-scale fuel ethanol production in Brazil does not take off?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 687-701.
    14. Rossana Liguori & Anna Pennacchio & Luciana Porto de Souza Vandenberghe & Addolorata De Chiaro & Leila Birolo & Carlos Ricardo Soccol & Vincenza Faraco, 2021. "Screening of Fungal Strains for Cellulolytic and Xylanolytic Activities Production and Evaluation of Brewers’ Spent Grain as Substrate for Enzyme Production by Selected Fungi," Energies, MDPI, vol. 14(15), pages 1-17, July.
    15. Smith Lewin, Caroline & Fonseca de Aguiar Martins, Ana Rosa & Pradelle, Florian, 2020. "Modelling, simulation and optimization of a solid residues downdraft gasifier: Application to the co-gasification of municipal solid waste and sugarcane bagasse," Energy, Elsevier, vol. 210(C).
    16. Mateusz Jackowski & Lukasz Niedzwiecki & Magdalena Lech & Mateusz Wnukowski & Amit Arora & Monika Tkaczuk-Serafin & Marcin Baranowski & Krystian Krochmalny & Vivek K. Veetil & Przemysław Seruga & Anna, 2020. "HTC of Wet Residues of the Brewing Process: Comprehensive Characterization of Produced Beer, Spent Grain and Valorized Residues," Energies, MDPI, vol. 13(8), pages 1-20, April.
    17. Khatiwada, Dilip & Leduc, Sylvain & Silveira, Semida & McCallum, Ian, 2016. "Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil," Renewable Energy, Elsevier, vol. 85(C), pages 371-386.
    18. Gillian Eggleston & Isabel Lima, 2015. "Sustainability Issues and Opportunities in the Sugar and Sugar-Bioproduct Industries," Sustainability, MDPI, vol. 7(9), pages 1-27, September.
    19. Andrade, Dana I. & Specchia, Stefania & Fuziki, Maria E.K. & Oliveira, Jessica R.P. & Tusset, Angelo M. & Lenzi, Giane G., 2024. "Dynamic analysis and SDRE control applied in a mutating autocatalyst with chaotic behavior," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    20. Wagner, Evelyn & Sierra-Ibarra, Estefanía & Rojas, Natalia L. & Martinez, Alfredo, 2022. "One-pot bioethanol production from brewery spent grain using the ethanologenic Escherichia coli MS04," Renewable Energy, Elsevier, vol. 189(C), pages 717-725.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2110-:d:236457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.