IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2862-d177499.html
   My bibliography  Save this article

Dynamic Analyses of the Hydro-Turbine Generator Shafting System Considering the Hydraulic Instability

Author

Listed:
  • Keyun Zhuang

    (Key Laboratory of Transients in Hydraulic Machinery, Wuhan University, Ministry of Education, Wuhan 430072, China)

  • Chaodan Gao

    (Key Laboratory of Transients in Hydraulic Machinery, Wuhan University, Ministry of Education, Wuhan 430072, China)

  • Ze Li

    (Key Laboratory of Transients in Hydraulic Machinery, Wuhan University, Ministry of Education, Wuhan 430072, China)

  • Donglin Yan

    (Key Laboratory of Transients in Hydraulic Machinery, Wuhan University, Ministry of Education, Wuhan 430072, China)

  • Xiangqian Fu

    (Key Laboratory of Transients in Hydraulic Machinery, Wuhan University, Ministry of Education, Wuhan 430072, China)

Abstract

Hydraulic instability is a complex factor causing the vibration of hydro-turbine generator shafting system (HGSS), and the mechanism is the uneven distribution of flow along the circumference. The common reasons for this phenomenon include the inconsistency of the blade exit flow angle, the relay stroke and the guide vane opening. This paper mainly focuses on the research of the hydraulic instability caused by the inconsistency of the blade exit flow angle. Firstly, based on the Kutta-Joukowski theorem, the hydraulic unbalance force model is firstly presented. Then, considering the chain reaction among the hydraulic, mechanical and electrical instability, a combined nonlinear mathematical model of the HGSS is established. Finally, by using numerical simulation, the dynamic characteristics of the HGSS with the changing of the deviation of the blade exit flow angle, the blade exit diameter and the guide vane opening angle are analyzed. Moreover, it is found that the hydraulic instability determines the overall changing trend of the shafting dynamic behaviors. In addition, some stable ranges of the HGSS are distinguished. But above all, these results can efficiently provide a reference for the design and manufacture of hydro-turbine blades and the operation of hydropower stations.

Suggested Citation

  • Keyun Zhuang & Chaodan Gao & Ze Li & Donglin Yan & Xiangqian Fu, 2018. "Dynamic Analyses of the Hydro-Turbine Generator Shafting System Considering the Hydraulic Instability," Energies, MDPI, vol. 11(10), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2862-:d:177499
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2862/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2862/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dean R. Giosio & Alan D. Henderson & Jessica M. Walker & Paul A. Brandner, 2017. "Rapid Reserve Generation from a Francis Turbine for System Frequency Control," Energies, MDPI, vol. 10(4), pages 1-15, April.
    2. Weijia Yang & Jiandong Yang & Wencheng Guo & Wei Zeng & Chao Wang & Linn Saarinen & Per Norrlund, 2015. "A Mathematical Model and Its Application for Hydro Power Units under Different Operating Conditions," Energies, MDPI, vol. 8(9), pages 1-16, September.
    3. Williamson, S.J. & Stark, B.H. & Booker, J.D., 2013. "Performance of a low-head pico-hydro Turgo turbine," Applied Energy, Elsevier, vol. 102(C), pages 1114-1126.
    4. Chirag Trivedi & Michel J. Cervantes & B. K. Gandhi, 2016. "Investigation of a High Head Francis Turbine at Runaway Operating Conditions," Energies, MDPI, vol. 9(3), pages 1-22, March.
    5. Donglin Yan & Weiyu Wang & Qijuan Chen, 2018. "Nonlinear Modeling and Dynamic Analyses of the Hydro–Turbine Governing System in the Load Shedding Transient Regime," Energies, MDPI, vol. 11(5), pages 1-17, May.
    6. Yan, Donglin & Wang, Weiyu & Chen, Qijuan, 2018. "Fractional-order modeling and dynamic analyses of a bending-torsional coupling generator rotor shaft system with multiple faults," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 1-15.
    7. Martínez-Lucas, Guillermo & Sarasúa, José Ignacio & Sánchez-Fernández, José Ángel & Wilhelmi, José Román, 2016. "Frequency control support of a wind-solar isolated system by a hydropower plant with long tail-race tunnel," Renewable Energy, Elsevier, vol. 90(C), pages 362-376.
    8. Williamson, S.J. & Stark, B.H. & Booker, J.D., 2014. "Low head pico hydro turbine selection using a multi-criteria analysis," Renewable Energy, Elsevier, vol. 61(C), pages 43-50.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Keyun Zhuang & Shehua Huang & Xiangqian Fu & Li Chen, 2022. "Nonlinear Hydraulic Vibration Modeling and Dynamic Analysis of Hydro-Turbine Generator Unit with Multiple Faults," Energies, MDPI, vol. 15(9), pages 1-23, May.
    2. Yixuan Guo & Xiao Liang & Ziyu Niu & Zezhou Cao & Liuwei Lei & Hualin Xiong & Diyi Chen, 2021. "Vibration Characteristics of a Hydroelectric Generating System with Different Hydraulic-Mechanical-Electric Parameters in a Sudden Load Increasing Process," Energies, MDPI, vol. 14(21), pages 1-21, November.
    3. Victorita Radulescu, 2021. "Research and Solutions to Minimize Frontal Area Overheating of Hydro Generator Stator with Vertical Axis," Energies, MDPI, vol. 14(5), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keyun Zhuang & Shehua Huang & Xiangqian Fu & Li Chen, 2022. "Nonlinear Hydraulic Vibration Modeling and Dynamic Analysis of Hydro-Turbine Generator Unit with Multiple Faults," Energies, MDPI, vol. 15(9), pages 1-23, May.
    2. Donglin Yan & Weiyu Wang & Qijuan Chen, 2018. "Nonlinear Modeling and Dynamic Analyses of the Hydro–Turbine Governing System in the Load Shedding Transient Regime," Energies, MDPI, vol. 11(5), pages 1-17, May.
    3. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zhao, Zhigao & Yang, Jiandong, 2023. "Transient analysis of a hydropower plant with a super-long headrace tunnel during load acceptance: Instability mechanism and measurement verification," Energy, Elsevier, vol. 263(PA).
    4. Anilkumar, T.T. & Simon, Sishaj P. & Padhy, Narayana Prasad, 2017. "Residential electricity cost minimization model through open well-pico turbine pumped storage system," Applied Energy, Elsevier, vol. 195(C), pages 23-35.
    5. Auth, Trevor L. & Wackerman, Grace E. & Garcia, Marcelo H. & Stillwell, Ashlynn S., 2021. "Low-head hydropower as a reserve power source: A case study of Northeastern Illinois," Renewable Energy, Elsevier, vol. 175(C), pages 980-989.
    6. Jawahar, C.P. & Michael, Prawin Angel, 2017. "A review on turbines for micro hydro power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 882-887.
    7. Yixuan Guo & Xiao Liang & Ziyu Niu & Zezhou Cao & Liuwei Lei & Hualin Xiong & Diyi Chen, 2021. "Vibration Characteristics of a Hydroelectric Generating System with Different Hydraulic-Mechanical-Electric Parameters in a Sudden Load Increasing Process," Energies, MDPI, vol. 14(21), pages 1-21, November.
    8. Benzon, D.S. & Aggidis, G.A. & Anagnostopoulos, J.S., 2016. "Development of the Turgo Impulse turbine: Past and present," Applied Energy, Elsevier, vol. 166(C), pages 1-18.
    9. Balkhair, Khaled S. & Rahman, Khalil Ur, 2017. "Sustainable and economical small-scale and low-head hydropower generation: A promising alternative potential solution for energy generation at local and regional scale," Applied Energy, Elsevier, vol. 188(C), pages 378-391.
    10. Yang, Weijia & Norrlund, Per & Chung, Chi Yung & Yang, Jiandong & Lundin, Urban, 2018. "Eigen-analysis of hydraulic-mechanical-electrical coupling mechanism for small signal stability of hydropower plant," Renewable Energy, Elsevier, vol. 115(C), pages 1014-1025.
    11. Kadier, Abudukeremu & Kalil, Mohd Sahaid & Pudukudy, Manoj & Hasan, Hassimi Abu & Mohamed, Azah & Hamid, Aidil Abdul, 2018. "Pico hydropower (PHP) development in Malaysia: Potential, present status, barriers and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2796-2805.
    12. Powell, D. & Ebrahimi, A. & Nourbakhsh, S. & Meshkahaldini, M. & Bilton, A.M., 2018. "Design of pico-hydro turbine generator systems for self-powered electrochemical water disinfection devices," Renewable Energy, Elsevier, vol. 123(C), pages 590-602.
    13. Elbatran, A.H. & Yaakob, O.B. & Ahmed, Yasser M. & Shabara, H.M., 2015. "Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 40-50.
    14. Zhou, Daqing & Gui, Jia & Deng, Zhiqun Daniel & Chen, Huixiang & Yu, Yunyun & Yu, An & Yang, Chunxia, 2019. "Development of an ultra-low head siphon hydro turbine using computational fluid dynamics," Energy, Elsevier, vol. 181(C), pages 43-50.
    15. Shengli Liao & Hongye Zhao & Gang Li & Benxi Liu, 2019. "Short-Term Load Dispatching Method for a Diversion Hydropower Plant with Multiple Turbines in One Tunnel Using a Two-Stage Model," Energies, MDPI, vol. 12(8), pages 1-18, April.
    16. Gaiser, Kyle & Erickson, Paul & Stroeve, Pieter & Delplanque, Jean-Pierre, 2016. "An experimental investigation of design parameters for pico-hydro Turgo turbines using a response surface methodology," Renewable Energy, Elsevier, vol. 85(C), pages 406-418.
    17. Pujol, T. & Vashisht, A.K. & Ricart, J. & Culubret, D. & Velayos, J., 2015. "Hydraulic efficiency of horizontal waterwheels: Laboratory data and CFD study for upgrading a western Himalayan watermill," Renewable Energy, Elsevier, vol. 83(C), pages 576-586.
    18. Wencheng Guo & Daoyi Zhu, 2018. "A Review of the Transient Process and Control for a Hydropower Station with a Super Long Headrace Tunnel," Energies, MDPI, vol. 11(11), pages 1-27, November.
    19. Joe Butchers & Shaun Benzon & Sam Williamson & Julian Booker & George Aggidis, 2021. "A Rationalised CFD Design Methodology for Turgo Turbines to Enable Local Manufacture in the Global South," Energies, MDPI, vol. 14(19), pages 1-23, October.
    20. Jiaxin Yu & Jun Wang, 2020. "Optimization Design of a Rain-Power Utilization System Based on a Siphon and Its Application in a High-Rise Building," Energies, MDPI, vol. 13(18), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2862-:d:177499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.