IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v102y2013icp1114-1126.html
   My bibliography  Save this article

Performance of a low-head pico-hydro Turgo turbine

Author

Listed:
  • Williamson, S.J.
  • Stark, B.H.
  • Booker, J.D.

Abstract

Turgo turbines are reported to be reliable, robust and able to operate efficiently over a range of flow rates. They are typically used in medium- to high-head applications. In this paper, the operation of a single-jet Turgo turbine outside of this typical application domain is investigated, at low heads of 3.5m down to 1m, a typical head range available for remote communities. A 2D quasi-steady-state mathematical model with low computational requirements is developed, to arrive at a base-line design. Experimental results from this base-line design show the model to predict torque within 5% at the peak power point across the investigated head range. The model requires no calibration and is therefore suitable for rapid performance estimation of first designs. As the head decreases and the jet diameter increases, 3D effects become more significant, reducing the accuracy of the model. Therefore, the model is used to identify important parameters for a further experimental study: Here, these parameters are varied from the base-line design to provide the sensitivity of the efficiency to each parameter. This study improves the turbine’s performance by 5% relative the base-line design to 91% peak jet-to-mechanical power efficiency at 3.5m head, and at 1.0m head provides a 20% improvement in the efficiency to 87%.

Suggested Citation

  • Williamson, S.J. & Stark, B.H. & Booker, J.D., 2013. "Performance of a low-head pico-hydro Turgo turbine," Applied Energy, Elsevier, vol. 102(C), pages 1114-1126.
  • Handle: RePEc:eee:appene:v:102:y:2013:i:c:p:1114-1126
    DOI: 10.1016/j.apenergy.2012.06.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912004746
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.06.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Date, Abhijit & Akbarzadeh, Aliakbar, 2009. "Design and cost analysis of low head simple reaction hydro turbine for remote area power supply," Renewable Energy, Elsevier, vol. 34(2), pages 409-415.
    2. Williams, A.A. & Simpson, R., 2009. "Pico hydro – Reducing technical risks for rural electrification," Renewable Energy, Elsevier, vol. 34(8), pages 1986-1991.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kadier, Abudukeremu & Kalil, Mohd Sahaid & Pudukudy, Manoj & Hasan, Hassimi Abu & Mohamed, Azah & Hamid, Aidil Abdul, 2018. "Pico hydropower (PHP) development in Malaysia: Potential, present status, barriers and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2796-2805.
    2. Lahimer, A.A. & Alghoul, M.A. & Yousif, Fadhil & Razykov, T.M. & Amin, N. & Sopian, K., 2013. "Research and development aspects on decentralized electrification options for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 314-324.
    3. Jawahar, C.P. & Michael, Prawin Angel, 2017. "A review on turbines for micro hydro power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 882-887.
    4. Bozorgi, A. & Javidpour, E. & Riasi, A. & Nourbakhsh, A., 2013. "Numerical and experimental study of using axial pump as turbine in Pico hydropower plants," Renewable Energy, Elsevier, vol. 53(C), pages 258-264.
    5. Manzano-Agugliaro, Francisco & Taher, Myriam & Zapata-Sierra, Antonio & Juaidi, Adel & Montoya, Francisco G., 2017. "An overview of research and energy evolution for small hydropower in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 476-489.
    6. Choudhury, Shibabrata & Parida, Adikanda & Pant, Rajive Mohan & Chatterjee, Saibal, 2019. "GIS augmented computational intelligence technique for rural cluster electrification through prioritized site selection of micro-hydro power generation system," Renewable Energy, Elsevier, vol. 142(C), pages 487-496.
    7. Mishra, Sachin & Singal, S.K. & Khatod, D.K., 2011. "Optimal installation of small hydropower plant—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3862-3869.
    8. Powell, D. & Ebrahimi, A. & Nourbakhsh, S. & Meshkahaldini, M. & Bilton, A.M., 2018. "Design of pico-hydro turbine generator systems for self-powered electrochemical water disinfection devices," Renewable Energy, Elsevier, vol. 123(C), pages 590-602.
    9. Semmari, Hamza & Mauran, Sylvain & Stitou, Driss, 2017. "Experimental validation of an analytical model of hydraulic motor operating under variable electrical loads and pressure heads," Applied Energy, Elsevier, vol. 206(C), pages 1309-1320.
    10. Arash YoosefDoost & William David Lubitz, 2020. "Archimedes Screw Turbines: A Sustainable Development Solution for Green and Renewable Energy Generation—A Review of Potential and Design Procedures," Sustainability, MDPI, vol. 12(18), pages 1-34, September.
    11. Elbatran, A.H. & Yaakob, O.B. & Ahmed, Yasser M. & Shabara, H.M., 2015. "Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 40-50.
    12. Bilgili, Mehmet & Bilirgen, Harun & Ozbek, Arif & Ekinci, Firat & Demirdelen, Tugce, 2018. "The role of hydropower installations for sustainable energy development in Turkey and the world," Renewable Energy, Elsevier, vol. 126(C), pages 755-764.
    13. Abdullah, M.O. & Yung, V.C. & Anyi, M. & Othman, A.K. & Ab. Hamid, K.B. & Tarawe, J., 2010. "Review and comparison study of hybrid diesel/solar/hydro/fuel cell energy schemes for a rural ICT Telecenter," Energy, Elsevier, vol. 35(2), pages 639-646.
    14. Cobb, Bryan R. & Sharp, Kendra V., 2013. "Impulse (Turgo and Pelton) turbine performance characteristics and their impact on pico-hydro installations," Renewable Energy, Elsevier, vol. 50(C), pages 959-964.
    15. Laghari, J.A. & Mokhlis, H. & Bakar, A.H.A. & Mohammad, Hasmaini, 2013. "A comprehensive overview of new designs in the hydraulic, electrical equipments and controllers of mini hydro power plants making it cost effective technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 279-293.
    16. Dhakal, Sagar & Timilsina, Ashesh B. & Dhakal, Rabin & Fuyal, Dinesh & Bajracharya, Tri R. & Pandit, Hari P. & Amatya, Nagendra & Nakarmi, Amrit M., 2015. "Comparison of cylindrical and conical basins with optimum position of runner: Gravitational water vortex power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 662-669.
    17. Qian, Zhongdong & Wang, Fan & Guo, Zhiwei & Lu, Jie, 2016. "Performance evaluation of an axial-flow pump with adjustable guide vanes in turbine mode," Renewable Energy, Elsevier, vol. 99(C), pages 1146-1152.
    18. Hirmer, Stephanie & Cruickshank, Heather, 2014. "The user-value of rural electrification: An analysis and adoption of existing models and theories," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 145-154.
    19. Muhamad Alhaqurahman Isa & Priana Sudjono & Tatsuro Sato & Nariaki Onda & Izuki Endo & Asari Takada & Barti Setiani Muntalif & Jun’ichiro Ide, 2021. "Assessing the Sustainable Development of Micro-Hydro Power Plants in an Isolated Traditional Village West Java, Indonesia," Energies, MDPI, vol. 14(20), pages 1-13, October.
    20. Balkhair, Khaled S. & Rahman, Khalil Ur, 2017. "Sustainable and economical small-scale and low-head hydropower generation: A promising alternative potential solution for energy generation at local and regional scale," Applied Energy, Elsevier, vol. 188(C), pages 378-391.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:102:y:2013:i:c:p:1114-1126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.