IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i4p496-d95225.html
   My bibliography  Save this article

Rapid Reserve Generation from a Francis Turbine for System Frequency Control

Author

Listed:
  • Dean R. Giosio

    (Australian Maritime College, University of Tasmania, Launceston 7250, Tasmania, Australia)

  • Alan D. Henderson

    (School of Engineering & ICT, University of Tasmania, Hobart 7005, Tasmania, Australia)

  • Jessica M. Walker

    (Australian Maritime College, University of Tasmania, Launceston 7250, Tasmania, Australia)

  • Paul A. Brandner

    (Australian Maritime College, University of Tasmania, Launceston 7250, Tasmania, Australia)

Abstract

The increase in contributions from non base load renewables, such as wind and solar, can have adverse effects on the stability of an electrical grid. In this study, the possibility of rapidly loading a Francis turbine from a tail water depression (TWD) mode for providing additional system frequency control is investigated. Based on the analysis of full-scale TWD test results and key findings from the transient testing of a micro-hydro scale turbine unit, a detailed description of the TWD transition process is given. The formulation of an improved turbine model for use in one-dimensional hydro-electric plant models is presented with simulation results compared to full-scale data. The analytical model, which calculates output power according to the conservation of angular momentum and identified sources of loss, is used in parallel with full-scale and model scale test observations to elucidate the events and mechanisms occurring during this proposed transition. The output response, in terms of active power, was found to be highly dependent on guide vane opening rate in both full-scale and model tests. For an approximate doubling in opening rate, the duration of the reverse power flow was reduced by 38% and 21%, for full-scale and model units, while the low pressure transient increased by 16% and 8%, respectively. The analytical model was shown to capture the general response characteristic in all cases tested; however, output power response was over predicted due to two identified model assumptions made, while, for the more rapid opening, the penstock pressure was under predicted by approximately 15%.

Suggested Citation

  • Dean R. Giosio & Alan D. Henderson & Jessica M. Walker & Paul A. Brandner, 2017. "Rapid Reserve Generation from a Francis Turbine for System Frequency Control," Energies, MDPI, vol. 10(4), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:496-:d:95225
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/4/496/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/4/496/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giosio, D.R. & Henderson, A.D. & Walker, J.M. & Brandner, P.A. & Sargison, J.E. & Gautam, P., 2015. "Design and performance evaluation of a pump-as-turbine micro-hydro test facility with incorporated inlet flow control," Renewable Energy, Elsevier, vol. 78(C), pages 1-6.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrey Achitaev & Pavel Ilyushin & Konstantin Suslov & Sergey Kobyletski, 2022. "Dynamic Simulation of Starting and Emergency Conditions of a Hydraulic Unit Based on a Francis Turbine," Energies, MDPI, vol. 15(21), pages 1-18, October.
    2. Li, Huanhuan & Xu, Beibei & Riasi, Alireza & Szulc, Przemyslaw & Chen, Diyi & M'zoughi, Fares & Skjelbred, Hans Ivar & Kong, Jiehong & Tazraei, Pedram, 2019. "Performance evaluation in enabling safety for a hydropower generation system," Renewable Energy, Elsevier, vol. 143(C), pages 1628-1642.
    3. Keyun Zhuang & Chaodan Gao & Ze Li & Donglin Yan & Xiangqian Fu, 2018. "Dynamic Analyses of the Hydro-Turbine Generator Shafting System Considering the Hydraulic Instability," Energies, MDPI, vol. 11(10), pages 1-19, October.
    4. Donglin Yan & Weiyu Wang & Qijuan Chen, 2018. "Nonlinear Modeling and Dynamic Analyses of the Hydro–Turbine Governing System in the Load Shedding Transient Regime," Energies, MDPI, vol. 11(5), pages 1-17, May.
    5. Keyun Zhuang & Shehua Huang & Xiangqian Fu & Li Chen, 2022. "Nonlinear Hydraulic Vibration Modeling and Dynamic Analysis of Hydro-Turbine Generator Unit with Multiple Faults," Energies, MDPI, vol. 15(9), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Polák, 2019. "The Influence of Changing Hydropower Potential on Performance Parameters of Pumps in Turbine Mode," Energies, MDPI, vol. 12(11), pages 1-12, June.
    2. Renzi, Massimiliano & Nigro, Alessandra & Rossi, Mosè, 2020. "A methodology to forecast the main non-dimensional performance parameters of pumps-as-turbines (PaTs) operating at Best Efficiency Point (BEP)," Renewable Energy, Elsevier, vol. 160(C), pages 16-25.
    3. Jawahar, C.P. & Michael, Prawin Angel, 2017. "A review on turbines for micro hydro power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 882-887.
    4. Ghorani, Mohammad Mahdi & Sotoude Haghighi, Mohammad Hadi & Maleki, Ali & Riasi, Alireza, 2020. "A numerical study on mechanisms of energy dissipation in a pump as turbine (PAT) using entropy generation theory," Renewable Energy, Elsevier, vol. 162(C), pages 1036-1053.
    5. Morabito, Alessandro & Vagnoni, Elena & Di Matteo, Mariano & Hendrick, Patrick, 2021. "Numerical investigation on the volute cutwater for pumps running in turbine mode," Renewable Energy, Elsevier, vol. 175(C), pages 807-824.
    6. Maleki, Ali & Ghorani, Mohammad Mahdi & Haghighi, Mohammad Hadi Sotoude & Riasi, Alireza, 2020. "Numerical study on the effect of viscosity on a multistage pump running in reverse mode," Renewable Energy, Elsevier, vol. 150(C), pages 234-254.
    7. Maxime Binama & Kan Kan & Huixiang Chen & Yuan Zheng & Daqing Zhou & Alexis Muhirwa & Godfrey M. Bwimba, 2021. "Investigation into Pump Mode Flow Dynamics for a Mixed Flow PAT with Adjustable Runner Blades," Energies, MDPI, vol. 14(9), pages 1-28, May.
    8. Qian, Zhongdong & Wang, Fan & Guo, Zhiwei & Lu, Jie, 2016. "Performance evaluation of an axial-flow pump with adjustable guide vanes in turbine mode," Renewable Energy, Elsevier, vol. 99(C), pages 1146-1152.
    9. Tapia, A. & Millán, P. & Gómez-Estern, F., 2018. "Integer programming to optimize Micro-Hydro Power Plants for generic river profiles," Renewable Energy, Elsevier, vol. 126(C), pages 905-914.
    10. Wang, Tao & Kong, Fanyu & Xia, Bin & Bai, Yuxing & Wang, Chuan, 2017. "The method for determining blade inlet angle of special impeller using in turbine mode of centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 109(C), pages 518-528.
    11. Binama, Maxime & Su, Wen-Tao & Li, Xiao-Bin & Li, Feng-Chen & Wei, Xian-Zhu & An, Shi, 2017. "Investigation on pump as turbine (PAT) technical aspects for micro hydropower schemes: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 148-179.
    12. Wang, Tao & Wang, Chuan & Kong, Fanyu & Gou, Qiuqin & Yang, Sunsheng, 2017. "Theoretical, experimental, and numerical study of special impeller used in turbine mode of centrifugal pump as turbine," Energy, Elsevier, vol. 130(C), pages 473-485.
    13. Semmari, Hamza & Mauran, Sylvain & Stitou, Driss, 2017. "Experimental validation of an analytical model of hydraulic motor operating under variable electrical loads and pressure heads," Applied Energy, Elsevier, vol. 206(C), pages 1309-1320.
    14. Lin, Tong & Zhang, Jiajing & Wei, Bisheng & Zhu, Zuchao & Li, Xiaojun, 2024. "The role of bionic tubercle leading-edge in a centrifugal pump as turbines(PATs)," Renewable Energy, Elsevier, vol. 222(C).
    15. Martin Polák, 2021. "Innovation of Pump as Turbine According to Calculation Model for Francis Turbine Design," Energies, MDPI, vol. 14(9), pages 1-13, May.
    16. Carravetta, A. & Fecarotta, O. & Ramos, H.M., 2018. "A new low-cost installation scheme of PATs for pico-hydropower to recover energy in residential areas," Renewable Energy, Elsevier, vol. 125(C), pages 1003-1014.
    17. Zeyad Al-Suhaibani & Syed Noman Danish & Ziyad Saleh Al-Khalaf & Basharat Salim, 2023. "Improved Prediction Model and Utilization of Pump as Turbine for Excess Power Saving from Large Pumping System in Saudi Arabia," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    18. Gabriella Balacco, 2018. "Performance Prediction of a Pump as Turbine: Sensitivity Analysis Based on Artificial Neural Networks and Evolutionary Polynomial Regression," Energies, MDPI, vol. 11(12), pages 1-17, December.
    19. Li, Huanhuan & Chen, Diyi & Zhang, Hao & Wu, Changzhi & Wang, Xiangyu, 2017. "Hamiltonian analysis of a hydro-energy generation system in the transient of sudden load increasing," Applied Energy, Elsevier, vol. 185(P1), pages 244-253.
    20. Hu, Zanao & Cheng, Yongguang & Liu, Demin & Chen, Hongyu & Ji, Bin & Ding, Jinghuan, 2023. "Broadening the operating range of pump-turbine to deep-part load by runner optimization," Renewable Energy, Elsevier, vol. 207(C), pages 73-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:496-:d:95225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.