IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1456-d150746.html
   My bibliography  Save this article

Esterification of Jatropha Oil with Isopropanol via Ultrasonic Irradiation

Author

Listed:
  • Chia-Chi Chang

    (Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan)

  • Syuan Teng

    (Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan)

  • Min-Hao Yuan

    (Department of Occupational Safety and Health, China Medical University, Taichung 404, Taiwan)

  • Dar-Ren Ji

    (Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan)

  • Ching-Yuan Chang

    (Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan
    Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan)

  • Yi-Hung Chen

    (Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan)

  • Je-Lueng Shie

    (Department of Environmental Engineering, National I-Lan University, I-Lan 260, Taiwan)

  • Chungfang Ho

    (Department of International Business, Chung Yuan Christian University, Chung-Li 320, Taiwan)

  • Sz-Ying Tian

    (Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan)

  • Cesar Augusto Andrade-Tacca

    (Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan)

  • Do Van Manh

    (Institute of Environmental Technology, Vietnam Academy of Science and Technology, Hanoi 1000000, Vietnam)

  • Min-Yi Tsai

    (Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan)

  • Mei-Chin Chang

    (Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan)

  • Yen-Hau Chen

    (Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan)

  • Michael Huang

    (Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan)

  • Bo-Liang Liu

    (Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan)

Abstract

The reduction of high acid value (AV) of inedible jatropha oil (JO) by esterification with isopropanol (IPA), which is a common alcohol solvent waste in Taiwan’s high-tech industry, was studied. The decrease of AV is beneficial for the subsequent transesterification to produce JO biodiesel (i.e., biodiesel of fatty acid isopropyl ester (FAIE)). Acid catalyst (H 2 SO 4 ) and a novel mixing/emulsion technique using ultrasound irradiation (UI) were applied to promote and facilitate the esterification process. The results showed that increased IPA/oil molar ratio (M IOE ) can significantly reduce the AV, kinematic viscosity (KV), density (ρ LO ), and water content (M W ) of esterified JO, while also providing the benefit of enhancing the yield (Y F ) of biodiesel of FAIE. For example, with M IOE = 5 at esterification temperature (T E ) = 394.2 K (393.8–394.7 K), a reduction of AV of 99.25% with Y F of 67.15% can be achieved. Free fatty acid (FFA) was reduced from 18.06 wt.% to 0.14 wt.%, indicating 17.92 wt.% out of 18.06 wt.% of FFA was esterified to FAIE. As a result, among the Y F of 67.15%, 49.23% (= 67.15 wt.% deducting 17.92 wt.%) was contributed by the transesterification of triglycerides. By esterification of high FFA-containing raw JO with acid catalyst, one can not only avoid saponification, but also reduce the loading of the subsequent alkali-catalyzed transesterification. Moreover, increasing T E from 394.2 to 454.4 K further reduced AV (from 0.27 to 0.084 mg KOH/g) and M W (from 0.27 to 0.043 wt.%), but, on the other hand, it increased KV (from 14.62 to 25.2 mm 2 /s) and ρ LO (from 901.6 to 913.3 kg/m 3 ), while it decreased Y F (from 67.15 to 25.84%). In sum, IPA was successfully used as a replacement for methanol in the esterification of JO while UI provided mixing/emulsion along with heating resulting from cavitation for the system.

Suggested Citation

  • Chia-Chi Chang & Syuan Teng & Min-Hao Yuan & Dar-Ren Ji & Ching-Yuan Chang & Yi-Hung Chen & Je-Lueng Shie & Chungfang Ho & Sz-Ying Tian & Cesar Augusto Andrade-Tacca & Do Van Manh & Min-Yi Tsai & Mei-, 2018. "Esterification of Jatropha Oil with Isopropanol via Ultrasonic Irradiation," Energies, MDPI, vol. 11(6), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1456-:d:150746
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1456/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1456/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Norhasyima, R.S., 2011. "Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3501-3515.
    2. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
    3. Jain, Siddharth & Sharma, M.P., 2010. "Prospects of biodiesel from Jatropha in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 763-771, February.
    4. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    5. Fazal, M.A. & Haseeb, A.S.M.A. & Masjuki, H.H., 2011. "Biodiesel feasibility study: An evaluation of material compatibility; performance; emission and engine durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1314-1324, February.
    6. Jayed, M.H. & Masjuki, H.H. & Kalam, M.A. & Mahlia, T.M.I. & Husnawan, M. & Liaquat, A.M., 2011. "Prospects of dedicated biodiesel engine vehicles in Malaysia and Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 220-235, January.
    7. Andrade-Tacca, Cesar Augusto & Chang, Chia-Chi & Chen, Yi-Hung & Manh, Do-Van & Chang, Ching-Yuan & Ji, Dar-Ren & Tseng, Jyi-Yeong & Shie, Je-Lueng, 2014. "Esterification of jatropha oil via ultrasonic irradiation with auto-induced temperature-rise effect," Energy, Elsevier, vol. 71(C), pages 346-354.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Je-Lueng Shie & Wei-Sheng Yang & Yi-Ru Liau & Tian-Hui Liau & Hong-Ren Yang, 2021. "Subcritical Hydrothermal Co-Liquefaction of Process Rejects at a Wastepaper-Based Paper Mill with Waste Soybean Oil," Energies, MDPI, vol. 14(9), pages 1-14, April.
    2. Jisieike, Chiazor Faustina & Ishola, Niyi Babatunde & Latinwo, Lekan M. & Betiku, Eriola, 2023. "Crude rubber seed oil esterification using a solid catalyst: Optimization by hybrid adaptive neuro-fuzzy inference system and response surface methodology," Energy, Elsevier, vol. 263(PB).
    3. Ahmad Abbaszadeh-Mayvan & Barat Ghobadian & Gholamhassan Najafi & Talal Yusaf, 2018. "Intensification of Continuous Biodiesel Production from Waste Cooking Oils Using Shockwave Power Reactor: Process Evaluation and Optimization through Response Surface Methodology (RSM)," Energies, MDPI, vol. 11(10), pages 1-13, October.
    4. Aline Scaramuzza Aquino & Milena Fernandes da Silva & Thiago Silva de Almeida & Filipe Neimaier Bilheri & Attilio Converti & James Correia de Melo, 2022. "Mapping of Alternative Oilseeds from the Brazilian Caatinga and Assessment of Catalytic Pathways toward Biofuels Production," Energies, MDPI, vol. 15(18), pages 1-25, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silitonga, A.S. & Masjuki, H.H. & Mahlia, T.M.I. & Ong, H.C. & Atabani, A.E. & Chong, W.T., 2013. "A global comparative review of biodiesel production from jatropha curcas using different homogeneous acid and alkaline catalysts: Study of physical and chemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 514-533.
    2. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    3. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    4. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Ashrafur Rahman, S.M. & Mahmudul, H.M., 2015. "Energy scenario and biofuel policies and targets in ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 51-61.
    5. Atabani, A.E. & Silitonga, A.S. & Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Fayaz, H., 2013. "Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 211-245.
    6. Shahir, S.A. & Masjuki, H.H. & Kalam, M.A. & Imran, A. & Fattah, I.M. Rizwanul & Sanjid, A., 2014. "Feasibility of diesel–biodiesel–ethanol/bioethanol blend as existing CI engine fuel: An assessment of properties, material compatibility, safety and combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 379-395.
    7. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    8. Habibullah, M. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Mofijur, M. & Mobarak, H.M. & Ashraful, A.M., 2015. "Potential of biodiesel as a renewable energy source in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 819-834.
    9. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    10. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E. & Shahabuddin, M. & Palash, S.M. & Hazrat, M.A., 2013. "Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 441-455.
    11. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Yang, Yung-Hun, 2017. "An overview of microdiesel — A sustainable future source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1078-1090.
    12. Kalam, M.A. & Ahamed, J.U. & Masjuki, H.H., 2012. "Land availability of Jatropha production in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3999-4007.
    13. Sanjid, A. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Abedin, M.J. & Palash, S.M., 2013. "Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 664-682.
    14. Mohd Noor, C.W. & Noor, M.M. & Mamat, R., 2018. "Biodiesel as alternative fuel for marine diesel engine applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 127-142.
    15. Laviola, Bruno Galvêas & Rodrigues, Erina Vitório & Teodoro, Paulo Eduardo & Peixoto, Leonardo de Azevedo & Bhering, Leonardo Lopes, 2017. "Biometric and biotechnology strategies in Jatropha genetic breeding for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 894-904.
    16. Rizwanul Fattah, I.M. & Masjuki, H.H. & Liaquat, A.M. & Ramli, Rahizar & Kalam, M.A. & Riazuddin, V.N., 2013. "Impact of various biodiesel fuels obtained from edible and non-edible oils on engine exhaust gas and noise emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 552-567.
    17. Motasemi, F. & Ani, F.N., 2012. "A review on microwave-assisted production of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4719-4733.
    18. Ewunie, Gebresilassie Asnake & Morken, John & Lekang, Odd Ivar & Yigezu, Zerihun Demrew, 2021. "Factors affecting the potential of Jatropha curcas for sustainable biodiesel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    19. A. K. Azad, 2017. "Biodiesel from Mandarin Seed Oil: A Surprising Source of Alternative Fuel," Energies, MDPI, vol. 10(11), pages 1-22, October.
    20. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Liaquat, A.M. & Shahabuddin, M. & Varman, M., 2012. "Prospects of biodiesel from Jatropha in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5007-5020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1456-:d:150746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.