IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v4y2011i4p700-716d12144.html
   My bibliography  Save this article

Multiple Objective Compromised Method for Power Management in Virtual Power Plants

Author

Listed:
  • Jinxia Gong

    (School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Minhang, Shanghai 200240, China)

  • Da Xie

    (School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Minhang, Shanghai 200240, China)

  • Chuanwen Jiang

    (School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Minhang, Shanghai 200240, China)

  • Yanchi Zhang

    (Department of Automation, East China University of Science and Technology, Shanghai 200237, China)

Abstract

In practical optimization, a priority requirement for different objectives of multiple objective optimization problems should be considered. In this paper, the distributed power management of a Virtual Power Plant (VPP) with priority requirement is optimized by the compromised method. The operation optimization model of VPP is formulated as a fuzzy multiple objective optimization problem considering the satisfaction of customers and suppliers, the system stability, the power quality, and costs with operation limitations. The multiple objective optimization algorithm with the compromise of the satisfactory degree and the priority of objectives is studied based on the principle of two-step interactive satisfactory optimization. This method is also applied in a test system.

Suggested Citation

  • Jinxia Gong & Da Xie & Chuanwen Jiang & Yanchi Zhang, 2011. "Multiple Objective Compromised Method for Power Management in Virtual Power Plants," Energies, MDPI, vol. 4(4), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:4:y:2011:i:4:p:700-716:d:12144
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/4/4/700/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/4/4/700/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Liang-Hsuan & Tsai, Feng-Chou, 2001. "Fuzzy goal programming with different importance and priorities," European Journal of Operational Research, Elsevier, vol. 133(3), pages 548-556, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amit Kumer Podder & Sayemul Islam & Nallapaneni Manoj Kumar & Aneesh A. Chand & Pulivarthi Nageswara Rao & Kushal A. Prasad & T. Logeswaran & Kabir A. Mamun, 2020. "Systematic Categorization of Optimization Strategies for Virtual Power Plants," Energies, MDPI, vol. 13(23), pages 1-46, November.
    2. Nath, Rahul & Muhuri, Pranab K., 2024. "A novel evolutionary solution approach for many-objective reliability-redundancy allocation problem based on objective prioritization and constraint optimization," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    3. Michał Jasiński & Tomasz Sikorski & Dominika Kaczorowska & Jacek Rezmer & Vishnu Suresh & Zbigniew Leonowicz & Paweł Kostyła & Jarosław Szymańda & Przemysław Janik & Jacek Bieńkowski & Przemysław Prus, 2021. "A Case Study on Data Mining Application in a Virtual Power Plant: Cluster Analysis of Power Quality Measurements," Energies, MDPI, vol. 14(4), pages 1-14, February.
    4. Jingmin Wang & Wenhai Yang & Huaxin Cheng & Lingyu Huang & Yajing Gao, 2017. "The Optimal Configuration Scheme of the Virtual Power Plant Considering Benefits and Risks of Investors," Energies, MDPI, vol. 10(7), pages 1-12, July.
    5. Luis Hernández-Callejo, 2019. "A Comprehensive Review of Operation and Control, Maintenance and Lifespan Management, Grid Planning and Design, and Metering in Smart Grids," Energies, MDPI, vol. 12(9), pages 1-50, April.
    6. Michal Jasiński & Tomasz Sikorski & Dominika Kaczorowska & Jacek Rezmer & Vishnu Suresh & Zbigniew Leonowicz & Paweł Kostyla & Jarosław Szymańda & Przemysław Janik, 2020. "A Case Study on Power Quality in a Virtual Power Plant: Long Term Assessment and Global Index Application," Energies, MDPI, vol. 13(24), pages 1-20, December.
    7. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Akif Zia Khan & Dong Ryeol Shin, 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective," Energies, MDPI, vol. 10(4), pages 1-47, April.
    8. Michał Jasiński & Tomasz Sikorski & Dominika Kaczorowska & Jacek Rezmer & Vishnu Suresh & Zbigniew Leonowicz & Paweł Kostyła & Jarosław Szymańda & Przemysław Janik & Jacek Bieńkowski & Przemysław Prus, 2021. "A Case Study on a Hierarchical Clustering Application in a Virtual Power Plant: Detection of Specific Working Conditions from Power Quality Data," Energies, MDPI, vol. 14(4), pages 1-13, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiae Zhang & Jianjun Yang, 2016. "Flexible job-shop scheduling with flexible workdays, preemption, overlapping in operations and satisfaction criteria: an industrial application," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4894-4918, August.
    2. Shalini Kumari & Sasadhar Bera, 2023. "Developing an emission risk control model in coal‐fired power plants for investigating CO2 reduction strategies for sustainable business development," Business Strategy and the Environment, Wiley Blackwell, vol. 32(1), pages 842-857, January.
    3. Akoz, Onur & Petrovic, Dobrila, 2007. "A fuzzy goal programming method with imprecise goal hierarchy," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1427-1433, September.
    4. Sharma, Dinesh K. & Jana, R.K., 2009. "A hybrid genetic algorithm model for transshipment management decisions," International Journal of Production Economics, Elsevier, vol. 122(2), pages 703-713, December.
    5. Ramtin Joolaie & Ahmad Abedi Sarvestani & Fatemeh Taheri & Steven Van Passel & Hossein Azadi, 2017. "Sustainable cropping pattern in North Iran: application of fuzzy goal programming," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2199-2216, December.
    6. K. Taghizadeh & M. Bagherpour & I. Mahdavi, 2011. "An interactive fuzzy goal programming approach for multi-period multi-product production planning problem," Fuzzy Information and Engineering, Springer, vol. 3(4), pages 393-410, December.
    7. Seyed Sina Mohri & Meisam Akbarzadeh, 2019. "Locating key stations of a metro network using bi-objective programming: discrete and continuous demand mode," Public Transport, Springer, vol. 11(2), pages 321-340, August.
    8. Rifat G. Ozdemir & Ugur Cinar & Eren Kalem & Onur Ozcelik, 2016. "Sub-assembly detection and line balancing using fuzzy goal programming approach," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 8(1), pages 65-86.
    9. R. Ghasemy Yaghin & S.M.T. Fatemi Ghomi & S.A. Torabi, 2015. "A hybrid credibility-based fuzzy multiple objective optimisation to differential pricing and inventory policies with arbitrage consideration," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(14), pages 2628-2639, October.
    10. Kargar, Bahareh & Pishvaee, Mir Saman & Jahani, Hamed & Sheu, Jiuh-Biing, 2020. "Organ transportation and allocation problem under medical uncertainty: A real case study of liver transplantation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    11. Chen, Liang-Hsuan & Weng, Ming-Chu, 2006. "An evaluation approach to engineering design in QFD processes using fuzzy goal programming models," European Journal of Operational Research, Elsevier, vol. 172(1), pages 230-248, July.
    12. Wei He & Guozhu Jia & Hengshan Zong & Tao Huang, 2019. "Multi-Objective Cloud Manufacturing Service Selection and Scheduling with Different Objective Priorities," Sustainability, MDPI, vol. 11(17), pages 1-24, September.
    13. Fahimnia, Behnam & Jabbarzadeh, Armin, 2016. "Marrying supply chain sustainability and resilience: A match made in heaven," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 306-324.
    14. Wee, Hui-Ming & Lo, Chien-Chung & Hsu, Ping-Hui, 2009. "A multi-objective joint replenishment inventory model of deteriorated items in a fuzzy environment," European Journal of Operational Research, Elsevier, vol. 197(2), pages 620-631, September.
    15. Lotfi, M.M. & Torabi, S.A., 2011. "A fuzzy goal programming approach for mid-term assortment planning in supermarkets," European Journal of Operational Research, Elsevier, vol. 213(2), pages 430-441, September.
    16. Liang-chuan Wu & I-chan Tsai, 2014. "Three fuzzy goal programming models for index portfolios," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(8), pages 1155-1169, August.
    17. Hu, Chao-Fang & Teng, Chang-Jun & Li, Shao-Yuan, 2007. "A fuzzy goal programming approach to multi-objective optimization problem with priorities," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1319-1333, February.
    18. Kongar, Elif & Gupta, Surendra M., 2006. "Disassembly to order system under uncertainty," Omega, Elsevier, vol. 34(6), pages 550-561, December.
    19. Hocine, Amin & Zhuang, Zheng-Yun & Kouaissah, Noureddine & Li, Der-Chiang, 2020. "Weighted-additive fuzzy multi-choice goal programming (WA-FMCGP) for supporting renewable energy site selection decisions," European Journal of Operational Research, Elsevier, vol. 285(2), pages 642-654.
    20. Amid, A. & Ghodsypour, S.H. & O'Brien, C., 2011. "A weighted max-min model for fuzzy multi-objective supplier selection in a supply chain," International Journal of Production Economics, Elsevier, vol. 131(1), pages 139-145, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:4:y:2011:i:4:p:700-716:d:12144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.