IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p7881-d686898.html
   My bibliography  Save this article

A Market-Driven Management Model for Renewable-Powered Undergrid Mini-Grids

Author

Listed:
  • Tatiana González Grandón

    (Faculty of Economics, Humboldt Universität Berlin (HU), Spandauerstr. 1, 10178 Berlin, Germany)

  • Fernando de Cuadra García

    (Institute for Research in Technology (IIT), Comillas Pontifical University, 26 Calle de Santa Cruz de Marcenado, 28015 Madrid, Spain)

  • Ignacio Pérez-Arriaga

    (MIT Energy Initiative, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA)

Abstract

Renewable-powered “undergrid mini-grids” (UMGs) are instrumental for electrification in developing countries. An UMG can be installed under a—possibly unreliable— main grid to improve the local reliability or the main grid may “arrive” and connect to a previously isolated mini-grid. Minimising costs is key to reducing risks associated with UMG development. This article presents a novel market-logic strategy for the optimal operation of UMGs that can incorporate multiple types of controllable loads, customer smart curtailment based on reliability requirements, storage management, and exports to and imports from a main grid, which is subject to failure. The formulation results in a mixed-integer linear programming model (MILP) and assumes accurate predictions of the following uncertain parameters: grid spot prices, outages of the main grid, solar availability and demand profiles. An AC hybrid solar-battery-diesel UMG configuration from Nigeria is used as a case example, and numerical simulations are presented. The load-following (LF) and cycle-charging (CC) strategies are compared with our predictive strategy and HOMER Pro’s Predictive dispatch. Results prove the generality and adequacy of the market-logic dispatch model and help assess the relevance of outages of the main grid and of spot prices above the other uncertain input factors. Comparison results show that the proposed market-logic operation approach performs better in terms of cost minimisation, higher renewable fraction and lower diesel use with respect to the conventional LF and CC operating strategies.

Suggested Citation

  • Tatiana González Grandón & Fernando de Cuadra García & Ignacio Pérez-Arriaga, 2021. "A Market-Driven Management Model for Renewable-Powered Undergrid Mini-Grids," Energies, MDPI, vol. 14(23), pages 1-29, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7881-:d:686898
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/7881/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/7881/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    2. Hossain, Md Alamgir & Pota, Hemanshu Roy & Squartini, Stefano & Abdou, Ahmed Fathi, 2019. "Modified PSO algorithm for real-time energy management in grid-connected microgrids," Renewable Energy, Elsevier, vol. 136(C), pages 746-757.
    3. Thomas Schmitt & Tobias Rodemann & Jürgen Adamy, 2021. "The Cost of Photovoltaic Forecasting Errors in Microgrid Control with Peak Pricing," Energies, MDPI, vol. 14(9), pages 1-13, April.
    4. Jonathan F. Bard, 1988. "Short-Term Scheduling of Thermal-Electric Generators Using Lagrangian Relaxation," Operations Research, INFORMS, vol. 36(5), pages 756-766, October.
    5. Amjad Ali & Wuhua Li & Rashid Hussain & Xiangning He & Barry W. Williams & Abdul Hameed Memon, 2017. "Overview of Current Microgrid Policies, Incentives and Barriers in the European Union, United States and China," Sustainability, MDPI, vol. 9(7), pages 1-28, June.
    6. Morais, Hugo & Kádár, Péter & Faria, Pedro & Vale, Zita A. & Khodr, H.M., 2010. "Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming," Renewable Energy, Elsevier, vol. 35(1), pages 151-156.
    7. Alberto Dolara & Francesco Grimaccia & Giulia Magistrati & Gabriele Marchegiani, 2017. "Optimization Models for Islanded Micro-Grids: A Comparative Analysis between Linear Programming and Mixed Integer Programming," Energies, MDPI, vol. 10(2), pages 1-20, February.
    8. Mazzola, Simone & Vergara, Claudio & Astolfi, Marco & Li, Vivian & Perez-Arriaga, Ignacio & Macchi, Ennio, 2017. "Assessing the value of forecast-based dispatch in the operation of off-grid rural microgrids," Renewable Energy, Elsevier, vol. 108(C), pages 116-125.
    9. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    10. Kamankesh, Hamidreza & Agelidis, Vassilios G. & Kavousi-Fard, Abdollah, 2016. "Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand," Energy, Elsevier, vol. 100(C), pages 285-297.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Micangeli & Davide Fioriti & Paolo Cherubini & Pablo Duenas-Martinez, 2020. "Optimal Design of Isolated Mini-Grids with Deterministic Methods: Matching Predictive Operating Strategies with Low Computational Requirements," Energies, MDPI, vol. 13(16), pages 1-19, August.
    2. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    3. Moretti, L. & Polimeni, S. & Meraldi, L. & Raboni, P. & Leva, S. & Manzolini, G., 2019. "Assessing the impact of a two-layer predictive dispatch algorithm on design and operation of off-grid hybrid microgrids," Renewable Energy, Elsevier, vol. 143(C), pages 1439-1453.
    4. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    5. Thomas Sachs & Anna Gründler & Milos Rusic & Gilbert Fridgen, 2019. "Framing Microgrid Design from a Business and Information Systems Engineering Perspective," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(6), pages 729-744, December.
    6. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    7. Raya-Armenta, Jose Maurilio & Bazmohammadi, Najmeh & Avina-Cervantes, Juan Gabriel & Sáez, Doris & Vasquez, Juan C. & Guerrero, Josep M., 2021. "Energy management system optimization in islanded microgrids: An overview and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Bahramara, Salah & Sheikhahmadi, Pouria & Golpîra, Hêmin, 2019. "Co-optimization of energy and reserve in standalone micro-grid considering uncertainties," Energy, Elsevier, vol. 176(C), pages 792-804.
    9. Harsh, Pratik & Das, Debapriya, 2022. "Optimal coordination strategy of demand response and electric vehicle aggregators for the energy management of reconfigured grid-connected microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    10. Jingmin Wang & Wenhai Yang & Huaxin Cheng & Lingyu Huang & Yajing Gao, 2017. "The Optimal Configuration Scheme of the Virtual Power Plant Considering Benefits and Risks of Investors," Energies, MDPI, vol. 10(7), pages 1-12, July.
    11. Abdi, Hamdi & Beigvand, Soheil Derafshi & Scala, Massimo La, 2017. "A review of optimal power flow studies applied to smart grids and microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 742-766.
    12. Manur, Ashray & Venkataramanan, Giri & Sehloff, David, 2018. "Simple electric utility platform: A hardware/software solution for operating emergent microgrids," Applied Energy, Elsevier, vol. 210(C), pages 748-763.
    13. Moretti, Luca & Astolfi, Marco & Vergara, Claudio & Macchi, Ennio & Pérez-Arriaga, Josè Ignacio & Manzolini, Giampaolo, 2019. "A design and dispatch optimization algorithm based on mixed integer linear programming for rural electrification," Applied Energy, Elsevier, vol. 233, pages 1104-1121.
    14. Fina, Bernadette & Auer, Hans & Friedl, Werner, 2019. "Profitability of PV sharing in energy communities: Use cases for different settlement patterns," Energy, Elsevier, vol. 189(C).
    15. Dillon, Trent & Maurer, Benjamin & Lawson, Michael & Polagye, Brian, 2024. "Forecast-based stochastic optimization for a load powered by wave energy," Renewable Energy, Elsevier, vol. 226(C).
    16. Shakya, Bhupendra & Bruce, Anna & MacGill, Iain, 2019. "Survey based characterisation of energy services for improved design and operation of standalone microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 493-503.
    17. Fausto Calderon-Obaldia & Jordi Badosa & Anne Migan-Dubois & Vincent Bourdin, 2020. "A Two-Step Energy Management Method Guided by Day-Ahead Quantile Solar Forecasts: Cross-Impacts on Four Services for Smart-Buildings," Energies, MDPI, vol. 13(22), pages 1-29, November.
    18. Carlo Baron & Ameena S. Al-Sumaiti & Sergio Rivera, 2020. "Impact of Energy Storage Useful Life on Intelligent Microgrid Scheduling," Energies, MDPI, vol. 13(4), pages 1-23, February.
    19. Mazzola, Simone & Vergara, Claudio & Astolfi, Marco & Li, Vivian & Perez-Arriaga, Ignacio & Macchi, Ennio, 2017. "Assessing the value of forecast-based dispatch in the operation of off-grid rural microgrids," Renewable Energy, Elsevier, vol. 108(C), pages 116-125.
    20. Angelina D. Bintoudi & Lampros Zyglakis & Apostolos C. Tsolakis & Paschalis A. Gkaidatzis & Athanasios Tryferidis & Dimosthenis Ioannidis & Dimitrios Tzovaras, 2021. "OptiMEMS: An Adaptive Lightweight Optimal Microgrid Energy Management System Based on the Novel Virtual Distributed Energy Resources in Real-Life Demonstration," Energies, MDPI, vol. 14(10), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7881-:d:686898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.