IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p2903-d178277.html
   My bibliography  Save this article

A CVaR-Robust Risk Aversion Scheduling Model for Virtual Power Plants Connected with Wind-Photovoltaic-Hydropower-Energy Storage Systems, Conventional Gas Turbines and Incentive-Based Demand Responses

Author

Listed:
  • Liwei Ju

    (Schoolof Economic and management, North China Electric Power University, Beijing 102206, China
    Beijing Energy Development Research Base, Beijing 102206, China)

  • Peng Li

    (State Grid Henan Economic Research Institute, Zhengzhou 450052, China)

  • Qinliang Tan

    (Schoolof Economic and management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development (North China Electric Power University), Changping District, Beijing 102206, China)

  • Zhongfu Tan

    (Schoolof Economic and management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development (North China Electric Power University), Changping District, Beijing 102206, China)

  • GejiriFu De

    (Schoolof Economic and management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development (North China Electric Power University), Changping District, Beijing 102206, China)

Abstract

To make full use of distributed energy resources to meet load demand, this study aggregated wind power plants (WPPs), photovoltaic power generation (PV), small hydropower stations (SHSs), energy storage systems (ESSs), conventional gas turbines (CGTs) and incentive-based demand responses (IBDRs) into a virtual power plant (VPP) with price-based demand response (PBDR). Firstly, a basic scheduling model for the VPP was proposed in this study with the objective of the maximum operation revenue. Secondly, a risk aversion model for the VPP was constructed based on the conditional value at risk (CVaR) method and robust optimization theory considering the operating risk from WPP and PV. Thirdly, a solution methodology was constructed and three cases were considered for comparative analyses. Finally, an independent micro-grid on an industrial park in East China was utilized for an example analysis. The results show the following: (1) the proposed risk aversion scheduling model could cope with the uncertainty risk via a reasonable confidence degree β and robust coefficient Γ. When Γ ≤ 0.85 or Γ ≥ 0.95, a small uncertainty brought great risk, indicating that the risk attitude of the decision maker will affect the scheduling scheme of the VPP, and the decision maker belongs to the risk extreme aversion type. When Γ ∈ (0.85, 0.95), the decision-making scheme was in a stable state, the growth of β lead to the increase of CVaR, but the magnitude was not large. When the prediction error e was higher, the value of CVaR increased more when Γ increased by the same magnitude, which indicates that a lower prediction accuracy will amplify the uncertainty risk. (2) when the capacity ratio of (WPP, PV): ESS was higher than 1.5:1 and the peak-to-valley price gap was higher than 3:1, the values of revenue, VaR, and CVaR changed slower, indicating that both ESS and PBDR can improve the operating revenue, but the capacity scale of ESS and the peak-valley price gap need to be set properly, considering both economic benefits and operating risks. Therefore, the proposed risk aversion model could maximize the utilization of clean energy to obtain higher economic benefits while rationally controlling risks and provide reliable decision support for developing optimal operation plans for the VPP.

Suggested Citation

  • Liwei Ju & Peng Li & Qinliang Tan & Zhongfu Tan & GejiriFu De, 2018. "A CVaR-Robust Risk Aversion Scheduling Model for Virtual Power Plants Connected with Wind-Photovoltaic-Hydropower-Energy Storage Systems, Conventional Gas Turbines and Incentive-Based Demand Responses," Energies, MDPI, vol. 11(11), pages 1-28, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2903-:d:178277
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/2903/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/2903/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ju, Liwei & Tan, Zhongfu & Li, Huanhuan & Tan, Qingkun & Yu, Xiaobao & Song, Xiaohua, 2016. "Multi-objective operation optimization and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China," Energy, Elsevier, vol. 111(C), pages 322-340.
    2. Zamani, Ali Ghahgharaee & Zakariazadeh, Alireza & Jadid, Shahram, 2016. "Day-ahead resource scheduling of a renewable energy based virtual power plant," Applied Energy, Elsevier, vol. 169(C), pages 324-340.
    3. Shropshire, David & Purvins, Arturs & Papaioannou, Ioulia & Maschio, Isabella, 2012. "Benefits and cost implications from integrating small flexible nuclear reactors with off-shore wind farms in a virtual power plant," Energy Policy, Elsevier, vol. 46(C), pages 558-573.
    4. Tan, Zhongfu & Wang, Guan & Ju, Liwei & Tan, Qingkun & Yang, Wenhai, 2017. "Application of CVaR risk aversion approach in the dynamical scheduling optimization model for virtual power plant connected with wind-photovoltaic-energy storage system with uncertainties and demand r," Energy, Elsevier, vol. 124(C), pages 198-213.
    5. Pandžić, Hrvoje & Morales, Juan M. & Conejo, Antonio J. & Kuzle, Igor, 2013. "Offering model for a virtual power plant based on stochastic programming," Applied Energy, Elsevier, vol. 105(C), pages 282-292.
    6. Chi Cao & Jun Xie & Dong Yue & Chongxin Huang & Jixiang Wang & Shuyang Xu & Xingying Chen, 2017. "Distributed Economic Dispatch of Virtual Power Plant under a Non-Ideal Communication Network," Energies, MDPI, vol. 10(2), pages 1-18, February.
    7. Ju, Liwei & Tan, Zhongfu & Yuan, Jinyun & Tan, Qingkun & Li, Huanhuan & Dong, Fugui, 2016. "A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind–photovoltaic–energy storage system considering the uncertainty and demand response," Applied Energy, Elsevier, vol. 171(C), pages 184-199.
    8. Jingmin Wang & Wenhai Yang & Huaxin Cheng & Lingyu Huang & Yajing Gao, 2017. "The Optimal Configuration Scheme of the Virtual Power Plant Considering Benefits and Risks of Investors," Energies, MDPI, vol. 10(7), pages 1-12, July.
    9. Hao Bai & Shihong Miao & Xiaohong Ran & Chang Ye, 2015. "Optimal Dispatch Strategy of a Virtual Power Plant Containing Battery Switch Stations in a Unified Electricity Market," Energies, MDPI, vol. 8(3), pages 1-22, March.
    10. Jianchao Zhang & Boon-Chong Seet & Tek Tjing Lie, 2016. "An Event-Based Resource Management Framework for Distributed Decision-Making in Decentralized Virtual Power Plants," Energies, MDPI, vol. 9(8), pages 1-19, July.
    11. Tascikaraoglu, A. & Erdinc, O. & Uzunoglu, M. & Karakas, A., 2014. "An adaptive load dispatching and forecasting strategy for a virtual power plant including renewable energy conversion units," Applied Energy, Elsevier, vol. 119(C), pages 445-453.
    12. Zuoyu Liu & Weimin Zheng & Feng Qi & Lei Wang & Bo Zou & Fushuan Wen & You Xue, 2018. "Optimal Dispatch of a Virtual Power Plant Considering Demand Response and Carbon Trading," Energies, MDPI, vol. 11(6), pages 1-19, June.
    13. Haiteng Han & Hantao Cui & Shan Gao & Qingxin Shi & Anjie Fan & Chen Wu, 2018. "A Remedial Strategic Scheduling Model for Load Serving Entities Considering the Interaction between Grid-Level Energy Storage and Virtual Power Plants," Energies, MDPI, vol. 11(9), pages 1-19, September.
    14. Jun Xie & Chi Cao, 2017. "Non-Convex Economic Dispatch of a Virtual Power Plant via a Distributed Randomized Gradient-Free Algorithm," Energies, MDPI, vol. 10(7), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han Peng & Songyin Li & Linjian Shangguan & Yisa Fan & Hai Zhang, 2023. "Analysis of Wind Turbine Equipment Failure and Intelligent Operation and Maintenance Research," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    2. Xiaoyu Lyu & Zhiyu Xu & Ning Wang & Min Fu & Weisheng Xu, 2019. "A Two-Layer Interactive Mechanism for Peer-to-Peer Energy Trading Among Virtual Power Plants," Energies, MDPI, vol. 12(19), pages 1-28, September.
    3. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Gao, Chong & Ma, Zeyang, 2023. "A novel two-layer nested optimization method for a zero-carbon island integrated energy system, incorporating tidal current power generation," Renewable Energy, Elsevier, vol. 218(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naval, Natalia & Yusta, Jose M., 2021. "Virtual power plant models and electricity markets - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Wafa Nafkha-Tayari & Seifeddine Ben Elghali & Ehsan Heydarian-Forushani & Mohamed Benbouzid, 2022. "Virtual Power Plants Optimization Issue: A Comprehensive Review on Methods, Solutions, and Prospects," Energies, MDPI, vol. 15(10), pages 1-20, May.
    3. Ju, Liwei & Zhao, Rui & Tan, Qinliang & Lu, Yan & Tan, Qingkun & Wang, Wei, 2019. "A multi-objective robust scheduling model and solution algorithm for a novel virtual power plant connected with power-to-gas and gas storage tank considering uncertainty and demand response," Applied Energy, Elsevier, vol. 250(C), pages 1336-1355.
    4. Wei, Congying & Xu, Jian & Liao, Siyang & Sun, Yuanzhang & Jiang, Yibo & Ke, Deping & Zhang, Zhen & Wang, Jing, 2018. "A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy," Applied Energy, Elsevier, vol. 224(C), pages 659-670.
    5. Tong Xing & Hongyu Lin & Zhongfu Tan & Liwei Ju, 2019. "Coordinated Energy Management for Micro Energy Systems Considering Carbon Emissions Using Multi-Objective Optimization," Energies, MDPI, vol. 12(23), pages 1-27, November.
    6. Guoqiang Sun & Weihang Qian & Wenjin Huang & Zheng Xu & Zhongxing Fu & Zhinong Wei & Sheng Chen, 2019. "Stochastic Adaptive Robust Dispatch for Virtual Power Plants Using the Binding Scenario Identification Approach," Energies, MDPI, vol. 12(10), pages 1-23, May.
    7. Yu, Songyuan & Fang, Fang & Liu, Yajuan & Liu, Jizhen, 2019. "Uncertainties of virtual power plant: Problems and countermeasures," Applied Energy, Elsevier, vol. 239(C), pages 454-470.
    8. Mohammad Mohammadi Roozbehani & Ehsan Heydarian-Forushani & Saeed Hasanzadeh & Seifeddine Ben Elghali, 2022. "Virtual Power Plant Operational Strategies: Models, Markets, Optimization, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    9. Amit Kumer Podder & Sayemul Islam & Nallapaneni Manoj Kumar & Aneesh A. Chand & Pulivarthi Nageswara Rao & Kushal A. Prasad & T. Logeswaran & Kabir A. Mamun, 2020. "Systematic Categorization of Optimization Strategies for Virtual Power Plants," Energies, MDPI, vol. 13(23), pages 1-46, November.
    10. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    12. Hadayeghparast, Shahrzad & SoltaniNejad Farsangi, Alireza & Shayanfar, Heidarali, 2019. "Day-ahead stochastic multi-objective economic/emission operational scheduling of a large scale virtual power plant," Energy, Elsevier, vol. 172(C), pages 630-646.
    13. Rahmani-Dabbagh, Saeed & Sheikh-El-Eslami, Mohammad Kazem, 2016. "A profit sharing scheme for distributed energy resources integrated into a virtual power plant," Applied Energy, Elsevier, vol. 184(C), pages 313-328.
    14. Natalia Naval & Jose M. Yusta, 2020. "Water-Energy Management for Demand Charges and Energy Cost Optimization of a Pumping Stations System under a Renewable Virtual Power Plant Model," Energies, MDPI, vol. 13(11), pages 1-21, June.
    15. Mahmud, Khizir & Khan, Behram & Ravishankar, Jayashri & Ahmadi, Abdollah & Siano, Pierluigi, 2020. "An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    16. Jingjing Luo & Yajing Gao & Wenhai Yang & Yongchun Yang & Zheng Zhao & Shiyu Tian, 2018. "Optimal Operation Modes of Virtual Power Plants Based on Typical Scenarios Considering Output Evaluation Criteria," Energies, MDPI, vol. 11(10), pages 1-22, October.
    17. Salkuti, Surender Reddy, 2019. "Day-ahead thermal and renewable power generation scheduling considering uncertainty," Renewable Energy, Elsevier, vol. 131(C), pages 956-965.
    18. Gabriella Ferruzzi & Giorgio Graditi & Federico Rossi, 2020. "A joint approach for strategic bidding of a microgrid in energy and spinning reserve markets," Energy & Environment, , vol. 31(1), pages 88-115, February.
    19. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2016. "Stochastic profit-based scheduling of industrial virtual power plant using the best demand response strategy," Applied Energy, Elsevier, vol. 164(C), pages 590-606.
    20. Fang, Fang & Yu, Songyuan & Liu, Mingxi, 2020. "An improved Shapley value-based profit allocation method for CHP-VPP," Energy, Elsevier, vol. 213(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2903-:d:178277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.