IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p384-d1015632.html
   My bibliography  Save this article

Integration of Distributed Generations in Smart Distribution Networks Using Multi-Criteria Based Sustainable Planning Approach

Author

Listed:
  • Muhammad Waqas Khalil

    (US-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan)

  • Abdullah Altamimi

    (Department of Electrical Engineering, College of Engineering, Majmaah University, Al-Majmaah 11952, Saudi Arabia
    Engineering and Applied Science Research Center, Majmaah University, Al-Majmaah 11952, Saudi Arabia)

  • Syed Ali Abbas Kazmi

    (US-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan)

  • Zafar A. Khan

    (Department of Electrical Engineering, Mirpur University of Science and Technology, Mirpur 10250, Pakistan
    School of Computing and Engineering, Institute for Innovation in Sustainable Engineering, University of Derby, Derby DE22 1GB, UK)

  • Dong Ryeol Shin

    (Department of Electrical and Computer Engineering, College of Information and Communication Engineering (CICE), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea)

Abstract

Energy planning has become more complicated in the 21st century of sustainable development due to the inclusion of numerous standards such as techno-economic, and environmental considerations. This paper proposes multi-criteria sustainable planning (MCSP) based optimization approach for identifying DGs’ optimal allocations and rating powers. The main objectives of this paper are the reduction of the network’s total power loss, voltage profile improvement, energy loss saving maximization, and curtailing environmental emissions and water consumption to achieve Sustainable Development Goals (SDGs 3, 6, 7, 13, and 15) by taking the constraints into consideration. Different alternatives are evaluated across four aspects of performance indices; technical, cost-economic, environmental, and social (TEES). In terms of TEES performance evaluations, various multi-criteria decision-making (MCDM) approaches are used to determine the optimal trade-off among the available solutions. These methods are gaining wide acceptance due to their flexibility while considering all criteria and objectives concurrently. Annual energy loss saving is increased by 97.13%, voltage profile is improved to 0.9943 (p.u), and emissions are reduced by 82.45% using the proposed technique. The numerical results of the proposed MCSP approach are compared to previously published works to validate and may be used by researchers and energy planners as a planning tool for ADN schemes.

Suggested Citation

  • Muhammad Waqas Khalil & Abdullah Altamimi & Syed Ali Abbas Kazmi & Zafar A. Khan & Dong Ryeol Shin, 2022. "Integration of Distributed Generations in Smart Distribution Networks Using Multi-Criteria Based Sustainable Planning Approach," Sustainability, MDPI, vol. 15(1), pages 1-40, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:384-:d:1015632
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/384/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/384/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali Selim & Salah Kamel & Amal A. Mohamed & Ehab E. Elattar, 2021. "Optimal Allocation of Multiple Types of Distributed Generations in Radial Distribution Systems Using a Hybrid Technique," Sustainability, MDPI, vol. 13(12), pages 1-31, June.
    2. Niknam, Taher & Taheri, Seyed Iman & Aghaei, Jamshid & Tabatabaei, Sajad & Nayeripour, Majid, 2011. "A modified honey bee mating optimization algorithm for multiobjective placement of renewable energy resources," Applied Energy, Elsevier, vol. 88(12), pages 4817-4830.
    3. Ali, E.S. & Abd Elazim, S.M. & Abdelaziz, A.Y., 2017. "Ant Lion Optimization Algorithm for optimal location and sizing of renewable distributed generations," Renewable Energy, Elsevier, vol. 101(C), pages 1311-1324.
    4. Kumar, Abhishek & Sah, Bikash & Singh, Arvind R. & Deng, Yan & He, Xiangning & Kumar, Praveen & Bansal, R.C., 2017. "A review of multi criteria decision making (MCDM) towards sustainable renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 596-609.
    5. Esmaili, Masoud & Firozjaee, Esmail Chaktan & Shayanfar, Heidar Ali, 2014. "Optimal placement of distributed generations considering voltage stability and power losses with observing voltage-related constraints," Applied Energy, Elsevier, vol. 113(C), pages 1252-1260.
    6. Ehsan, Ali & Yang, Qiang, 2018. "Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques," Applied Energy, Elsevier, vol. 210(C), pages 44-59.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahesh Kumar & Amir Mahmood Soomro & Waqar Uddin & Laveet Kumar, 2022. "Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-48, October.
    2. Veerasamy, Veerapandiyan & Abdul Wahab, Noor Izzri & Ramachandran, Rajeswari & Othman, Mohammad Lutfi & Hizam, Hashim & Devendran, Vidhya Sagar & Irudayaraj, Andrew Xavier Raj & Vinayagam, Arangarajan, 2021. "Recurrent network based power flow solution for voltage stability assessment and improvement with distributed energy sources," Applied Energy, Elsevier, vol. 302(C).
    3. Luo, Lizi & Gu, Wei & Zhang, Xiao-Ping & Cao, Ge & Wang, Weijun & Zhu, Gang & You, Dingjun & Wu, Zhi, 2018. "Optimal siting and sizing of distributed generation in distribution systems with PV solar farm utilized as STATCOM (PV-STATCOM)," Applied Energy, Elsevier, vol. 210(C), pages 1092-1100.
    4. Muttaqi, K.M. & Le, An D.T. & Aghaei, J. & Mahboubi-Moghaddam, E. & Negnevitsky, M. & Ledwich, G., 2016. "Optimizing distributed generation parameters through economic feasibility assessment," Applied Energy, Elsevier, vol. 165(C), pages 893-903.
    5. Fu, Xueqian & Chen, Haoyong & Cai, Runqing & Yang, Ping, 2015. "Optimal allocation and adaptive VAR control of PV-DG in distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 173-182.
    6. Jingmin Wang & Wenhai Yang & Huaxin Cheng & Lingyu Huang & Yajing Gao, 2017. "The Optimal Configuration Scheme of the Virtual Power Plant Considering Benefits and Risks of Investors," Energies, MDPI, vol. 10(7), pages 1-12, July.
    7. Muhammad Shahroz Sultan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Dong Ryeol Shin, 2023. "Multi-Objective Optimization-Based Approach for Optimal Allocation of Distributed Generation Considering Techno-Economic and Environmental Indices," Sustainability, MDPI, vol. 15(5), pages 1-30, February.
    8. Zeeshan Memon Anjum & Dalila Mat Said & Mohammad Yusri Hassan & Zohaib Hussain Leghari & Gul Sahar, 2022. "Parallel operated hybrid Arithmetic-Salp swarm optimizer for optimal allocation of multiple distributed generation units in distribution networks," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-38, April.
    9. Ramdhan Halid Siregar & Yuwaldi Away & Tarmizi & Akhyar, 2023. "Minimizing Power Losses for Distributed Generation (DG) Placements by Considering Voltage Profiles on Distribution Lines for Different Loads Using Genetic Algorithm Methods," Energies, MDPI, vol. 16(14), pages 1-25, July.
    10. Ali Selim & Salah Kamel & Amal A. Mohamed & Ehab E. Elattar, 2021. "Optimal Allocation of Multiple Types of Distributed Generations in Radial Distribution Systems Using a Hybrid Technique," Sustainability, MDPI, vol. 13(12), pages 1-31, June.
    11. Kadir Doğanşahin & Bedri Kekezoğlu & Recep Yumurtacı & Ozan Erdinç & João P. S. Catalão, 2018. "Maximum Permissible Integration Capacity of Renewable DG Units Based on System Loads," Energies, MDPI, vol. 11(1), pages 1-16, January.
    12. Kazak, Jan & van Hoof, Joost & Szewranski, Szymon, 2017. "Challenges in the wind turbines location process in Central Europe – The use of spatial decision support systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 425-433.
    13. Ieva Meidute-Kavaliauskiene & Vida Davidaviciene & Shahryar Ghorbani & Iman Ghasemian Sahebi, 2021. "Optimal Allocation of Gas Resources to Different Consumption Sectors Using Multi-Objective Goal Programming," Sustainability, MDPI, vol. 13(10), pages 1-19, May.
    14. Mouwafi, Mohamed T. & El-Sehiemy, Ragab A. & El-Ela, Adel A. Abou, 2022. "A two-stage method for optimal placement of distributed generation units and capacitors in distribution systems," Applied Energy, Elsevier, vol. 307(C).
    15. Busola D. Akintayo & Oluwafemi E. Ige & Olubayo M. Babatunde & Oludolapo A. Olanrewaju, 2023. "Evaluation and Prioritization of Power-Generating Systems Using a Life Cycle Assessment and a Multicriteria Decision-Making Approach," Energies, MDPI, vol. 16(18), pages 1-18, September.
    16. Guido C. Guerrero-Liquet & Santiago Oviedo-Casado & J. M. Sánchez-Lozano & M. Socorro García-Cascales & Javier Prior & Antonio Urbina, 2018. "Determination of the Optimal Size of Photovoltaic Systems by Using Multi-Criteria Decision-Making Methods," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    17. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    18. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    19. Nikkhah, Saman & Rabiee, Abbas, 2018. "Optimal wind power generation investment, considering voltage stability of power systems," Renewable Energy, Elsevier, vol. 115(C), pages 308-325.
    20. Weifeng Xu & Bing Yu & Qing Song & Liguo Weng & Man Luo & Fan Zhang, 2022. "Economic and Low-Carbon-Oriented Distribution Network Planning Considering the Uncertainties of Photovoltaic Generation and Load Demand to Achieve Their Reliability," Energies, MDPI, vol. 15(24), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:384-:d:1015632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.