IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i3p323-d92405.html
   My bibliography  Save this article

A Witricity-Based High-Power Device for Wireless Charging of Electric Vehicles

Author

Listed:
  • Zhongyu Dai

    (School of Electrical Engineering, Wuhan University, Wuhan 430072, China)

  • Junhua Wang

    (School of Electrical Engineering, Wuhan University, Wuhan 430072, China)

  • Mengjiao Long

    (School of Electrical Engineering, Wuhan University, Wuhan 430072, China)

  • Hong Huang

    (School of Electrical Engineering, Wuhan University, Wuhan 430072, China)

Abstract

In this paper, a Witricity-based high-power device is proposed for wireless charging of electric vehicles. According to the specific requirements of three-stage charging for electric vehicles, four compensation modes of the Witricity system are analyzed by the Loosely Coupled Theory among transformer coils and the Substitution Theorem in circuit theory. In addition, when combining voltage withstand levels, the current withstand capability, the switching frequency of electronic switching tubes, and the features of the resonant circuit, the series-parallel (SP) compensation mode is selected as the best compensation mode for matching the capacitor of the system. The performances of coils with different ferrite core arrangements are compared by simulations and models. The feasibility of the system is verified theoretically and the system functions are evaluated by the joint simulation of Simplorer and Maxwell. Finally, a Witricity-based high-power device is proposed as designed, and the correctness of theoretical analyses and simulation results are verified.

Suggested Citation

  • Zhongyu Dai & Junhua Wang & Mengjiao Long & Hong Huang, 2017. "A Witricity-Based High-Power Device for Wireless Charging of Electric Vehicles," Energies, MDPI, vol. 10(3), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:323-:d:92405
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/3/323/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/3/323/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Young Jae Jang & Seungmin Jeong & Min Seok Lee, 2016. "Initial Energy Logistics Cost Analysis for Stationary, Quasi-Dynamic, and Dynamic Wireless Charging Public Transportation Systems," Energies, MDPI, vol. 9(7), pages 1-23, June.
    2. Vijith Vijayakumaran Nair & Jun Rim Choi, 2015. "An Integrated Chip High-Voltage Power Receiver for Wireless Biomedical Implants," Energies, MDPI, vol. 8(6), pages 1-21, June.
    3. Kohei Mizuno & Naoki Shinohara & Junji Miyakoshi, 2015. "Expression of Heat Shock Proteins in Human Fibroblast Cells under Magnetic Resonant Coupling Wireless Power Transfer," Energies, MDPI, vol. 8(10), pages 1-9, October.
    4. Yabiao Gao & Kathleen Blair Farley & Zion Tsz Ho Tse, 2015. "A Uniform Voltage Gain Control for Alignment Robustness in Wireless EV Charging," Energies, MDPI, vol. 8(8), pages 1-16, August.
    5. Aditya Shekhar & Venugopal Prasanth & Pavol Bauer & Mark Bolech, 2016. "Economic Viability Study of an On-Road Wireless Charging System with a Generic Driving Range Estimation Method," Energies, MDPI, vol. 9(2), pages 1-20, January.
    6. Chung-Chuan Hou & Kuei-Yuan Chang, 2016. "Inductive Power Transfer Systems for Bus-Stop-Powered Electric Vehicles," Energies, MDPI, vol. 9(7), pages 1-14, June.
    7. Zhenshi Wang & Xuezhe Wei & Haifeng Dai, 2015. "Design and Control of a 3 kW Wireless Power Transfer System for Electric Vehicles," Energies, MDPI, vol. 9(1), pages 1-18, December.
    8. Giuseppe Tortora & Francesca Mulana & Gastone Ciuti & Paolo Dario & Arianna Menciassi, 2015. "Inductive-Based Wireless Power Recharging System for an Innovative Endoscopic Capsule," Energies, MDPI, vol. 8(9), pages 1-20, September.
    9. Weitong Chen & Chunhua Liu & Christopher H.T. Lee & Zhiqiang Shan, 2016. "Cost-Effectiveness Comparison of Coupler Designs of Wireless Power Transfer for Electric Vehicle Dynamic Charging," Energies, MDPI, vol. 9(11), pages 1-13, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed, Ahmed A.S. & Shaier, Ahmed A. & Metwally, Hamid & Selem, Sameh I., 2020. "A comprehensive overview of inductive pad in electric vehicles stationary charging," Applied Energy, Elsevier, vol. 262(C).
    2. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Tim Collins & Rupak Kharel & Augustine Ikpehai, 2017. "A New Technique for Reducing Size of a WPT System Using Two-Loop Strongly-Resonant Inductors," Energies, MDPI, vol. 10(10), pages 1-18, October.
    3. Amjad, Muhammad & Farooq-i-Azam, Muhammad & Ni, Qiang & Dong, Mianxiong & Ansari, Ejaz Ahmad, 2022. "Wireless charging systems for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karam Hwang & Jaeyong Cho & Dongwook Kim & Jaehyoung Park & Jong Hwa Kwon & Sang Il Kwak & Hyun Ho Park & Seungyoung Ahn, 2017. "An Autonomous Coil Alignment System for the Dynamic Wireless Charging of Electric Vehicles to Minimize Lateral Misalignment," Energies, MDPI, vol. 10(3), pages 1-20, March.
    2. Machura, Philip & Li, Quan, 2019. "A critical review on wireless charging for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 209-234.
    3. Xu Liu & Lindsay Clare & Xibo Yuan & Chonglin Wang & Jianhua Liu, 2017. "A Design Method for Making an LCC Compensation Two-Coil Wireless Power Transfer System More Energy Efficient Than an SS Counterpart," Energies, MDPI, vol. 10(9), pages 1-29, September.
    4. Haddad, Diala & Konstantinou, Theodora & Aliprantis, Dionysios & Gkritza, Konstantina & Pekarek, Steven & Haddock, John, 2022. "Analysis of the financial viability of high-powered electric roadways: A case study for the state of Indiana," Energy Policy, Elsevier, vol. 171(C).
    5. Benitto Albert Rayan & Umashankar Subramaniam & S. Balamurugan, 2023. "Wireless Power Transfer in Electric Vehicles: A Review on Compensation Topologies, Coil Structures, and Safety Aspects," Energies, MDPI, vol. 16(7), pages 1-46, March.
    6. Chaoqiang Jiang & K. T. Chau & Chunhua Liu & Christopher H. T. Lee, 2017. "An Overview of Resonant Circuits for Wireless Power Transfer," Energies, MDPI, vol. 10(7), pages 1-20, June.
    7. Konstantina Anastasiadou & Nikolaos Gavanas & Magda Pitsiava-Latinopoulou & Evangelos Bekiaris, 2021. "Infrastructure Planning for Autonomous Electric Vehicles, Integrating Safety and Sustainability Aspects: A Multi-Criteria Analysis Approach," Energies, MDPI, vol. 14(17), pages 1-19, August.
    8. Chaoqiang Jiang & K.T. Chau & Chunhua Liu & Wei Han, 2017. "Wireless DC Motor Drives with Selectability and Controllability," Energies, MDPI, vol. 10(1), pages 1-15, January.
    9. Stefan Helber & Justine Broihan & Young Jae Jang & Peter Hecker & Thomas Feuerle, 2018. "Location Planning for Dynamic Wireless Charging Systems for Electric Airport Passenger Buses," Energies, MDPI, vol. 11(2), pages 1-16, January.
    10. Ilman Sulaeman & Gautham Ram Chandra Mouli & Aditya Shekhar & Pavol Bauer, 2021. "Comparison of AC and DC Nanogrid for Office Buildings with EV Charging, PV and Battery Storage," Energies, MDPI, vol. 14(18), pages 1-22, September.
    11. Niu, Songyan & Xu, Haiqi & Sun, Zhirui & Shao, Z.Y. & Jian, Linni, 2019. "The state-of-the-arts of wireless electric vehicle charging via magnetic resonance: principles, standards and core technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    12. Hyukjoon Lee & Dongjin Ji & Dong-Ho Cho, 2019. "Optimal Design of Wireless Charging Electric Bus System Based on Reinforcement Learning," Energies, MDPI, vol. 12(7), pages 1-20, March.
    13. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    14. Linlin Tan & Jiacheng Li & Chen Chen & Changxin Yan & Jinpeng Guo & Xueliang Huang, 2016. "Analysis and Performance Improvement of WPT Systems in the Environment of Single Non-Ferromagnetic Metal Plates," Energies, MDPI, vol. 9(8), pages 1-16, July.
    15. Longzhao Sun & Houjun Tang & Yingyi Zhang, 2015. "Determining the Frequency for Load-Independent Output Current in Three-Coil Wireless Power Transfer System," Energies, MDPI, vol. 8(9), pages 1-12, September.
    16. Alwesabi, Yaseen & Wang, Yong & Avalos, Raul & Liu, Zhaocai, 2020. "Electric bus scheduling under single depot dynamic wireless charging infrastructure planning," Energy, Elsevier, vol. 213(C).
    17. Yan, Xiao-Yu & Yang, Shi-Chun & He, Hong & Tang, Tie-Qiao, 2018. "An optimization model for wireless power transfer system based on circuit simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 873-880.
    18. Kafeel Ahmed Kalwar & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan, 2016. "Coil Design for High Misalignment Tolerant Inductive Power Transfer System for EV Charging," Energies, MDPI, vol. 9(11), pages 1-13, November.
    19. Yixiao Luo & Chunhua Liu & Feng Yu & Christopher H.T. Lee, 2017. "Design and Evaluation of an Efficient Three-Phase Four-Leg Voltage Source Inverter with Reduced IGBTs," Energies, MDPI, vol. 10(4), pages 1-14, April.
    20. Prasanth Venugopal & Soumya Bandyopadhyay & Pavol Bauer & Jan Abraham Ferreira, 2017. "A Generic Matrix Method to Model the Magnetics of Multi-Coil Air-Cored Inductive Power Transfer Systems," Energies, MDPI, vol. 10(6), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:323-:d:92405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.