IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i8p576-d74628.html
   My bibliography  Save this article

Analysis and Performance Improvement of WPT Systems in the Environment of Single Non-Ferromagnetic Metal Plates

Author

Listed:
  • Linlin Tan

    (Department of Electrical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210096, China
    Jiangsu Key Laboratory of Smart Grid Technology and Equipment, Zhenjiang 212009, China)

  • Jiacheng Li

    (Department of Electrical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210096, China
    Jiangsu Key Laboratory of Smart Grid Technology and Equipment, Zhenjiang 212009, China)

  • Chen Chen

    (Department of Electrical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210096, China
    State Grid Jiangsu Economic Research Institute, Nanjing 210096, China)

  • Changxin Yan

    (Department of Electrical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210096, China
    Jiangsu Key Laboratory of Smart Grid Technology and Equipment, Zhenjiang 212009, China)

  • Jinpeng Guo

    (Department of Electrical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210096, China
    Jiangsu Key Laboratory of Smart Grid Technology and Equipment, Zhenjiang 212009, China)

  • Xueliang Huang

    (Department of Electrical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210096, China
    Jiangsu Key Laboratory of Smart Grid Technology and Equipment, Zhenjiang 212009, China)

Abstract

Wireless power transfer (WPT) is greatly affected when the transmission channel is surrounded by non-ferromagnetic metallic objects and the alternating magnetic field interacts with the metal conductor, which is more of an issue in wirelessly charged electric vehicle (EV) applications. This paper analyses the performances of a WPT system in an environment with a non-ferromagnetic metal plate. The impedance model of the WPT system in the metal environment is established. Moreover the variation law of a coil’s equivalent inductance and resistance is deduced when the coil is surrounded by the non-ferromagnetic metal plate. Meanwhile, simulations, theory and experiments all confirm that the model is correct. Finally, since the system performance of a wireless charging system is influenced by non-ferromagnetic metals, this paper puts forward a method to improve the performance, that is, to place ferrite cores between the receiving coil and a metal plate. Experiments are carried out to verify the method, and the desired results are achieved.

Suggested Citation

  • Linlin Tan & Jiacheng Li & Chen Chen & Changxin Yan & Jinpeng Guo & Xueliang Huang, 2016. "Analysis and Performance Improvement of WPT Systems in the Environment of Single Non-Ferromagnetic Metal Plates," Energies, MDPI, vol. 9(8), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:576-:d:74628
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/8/576/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/8/576/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhenshi Wang & Xuezhe Wei & Haifeng Dai, 2015. "Design and Control of a 3 kW Wireless Power Transfer System for Electric Vehicles," Energies, MDPI, vol. 9(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xian Zhang & Yanan Ren & Lin Sha & Qingxin Yang & Xuejing Ni & Fengxian Wang, 2020. "Analysis of Dynamic Characteristics of Foreign Metal Objects under Electromagnetic Force in High-Power Wireless Power Transfer," Energies, MDPI, vol. 13(15), pages 1-15, July.
    2. Ravikiran Vaka & Ritesh Kumar Keshri, 2017. "Review on Contactless Power Transfer for Electric Vehicle Charging," Energies, MDPI, vol. 10(5), pages 1-20, May.
    3. Yushan Wang & Baowei Song & Zhaoyong Mao, 2020. "Analysis and Experiment for Wireless Power Transfer Systems with Two Kinds Shielding Coils in EVs," Energies, MDPI, vol. 13(1), pages 1-18, January.
    4. Wenxun Xiao & Ruigeng Shen & Bo Zhang & Dongyuan Qiu & Yanfeng Chen & Tian Li, 2018. "Effects of Foreign Metal Object on Soft-Switching Conditions of Class-E Inverter in WPT," Energies, MDPI, vol. 11(8), pages 1-19, July.
    5. Yan, Xiao-Yu & Yang, Shi-Chun & He, Hong & Tang, Tie-Qiao, 2018. "An optimization model for wireless power transfer system based on circuit simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 873-880.
    6. Mohamed, Ahmed A.S. & Shaier, Ahmed A. & Metwally, Hamid & Selem, Sameh I., 2020. "A comprehensive overview of inductive pad in electric vehicles stationary charging," Applied Energy, Elsevier, vol. 262(C).
    7. Pradeep Vishnuram & Suresh Panchanathan & Narayanamoorthi Rajamanickam & Vijayakumar Krishnasamy & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(10), pages 1-31, May.
    8. Heqi Xu & Chunfang Wang & Dongwei Xia & Yunrui Liu, 2019. "Design of Magnetic Coupler for Wireless Power Transfer," Energies, MDPI, vol. 12(15), pages 1-12, August.
    9. Chaoqiang Jiang & K.T. Chau & Chunhua Liu & Wei Han, 2017. "Wireless DC Motor Drives with Selectability and Controllability," Energies, MDPI, vol. 10(1), pages 1-15, January.
    10. Joao Victor Pinon Pereira Dias & Masafumi Miyatake, 2018. "Increase in Robustness against Effects of Coil Misalignment on Electrical Parameters Using Magnetic Material Layer in Planar Coils of Wireless Power Transfer Transformer," Energies, MDPI, vol. 11(8), pages 1-25, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weitong Chen & Chunhua Liu & Christopher H.T. Lee & Zhiqiang Shan, 2016. "Cost-Effectiveness Comparison of Coupler Designs of Wireless Power Transfer for Electric Vehicle Dynamic Charging," Energies, MDPI, vol. 9(11), pages 1-13, November.
    2. Morsy Nour & José Pablo Chaves-Ávila & Gaber Magdy & Álvaro Sánchez-Miralles, 2020. "Review of Positive and Negative Impacts of Electric Vehicles Charging on Electric Power Systems," Energies, MDPI, vol. 13(18), pages 1-34, September.
    3. Seung-Hwan Lee & Kyung-Pyo Yi & Myung-Yong Kim, 2019. "6.78-MHz, 50-W Wireless Power Supply Over a 60-cm Distance Using a GaN-Based Full-Bridge Inverter," Energies, MDPI, vol. 12(3), pages 1-19, January.
    4. Zhongyu Dai & Junhua Wang & Mengjiao Long & Hong Huang, 2017. "A Witricity-Based High-Power Device for Wireless Charging of Electric Vehicles," Energies, MDPI, vol. 10(3), pages 1-14, March.
    5. Supapong Nutwong & Anawach Sangswang & Sumate Naetiladdanon & Ekkachai Mujjalinvimut, 2018. "A Novel Output Power Control of Wireless Powering Kitchen Appliance System with Free-Positioning Feature," Energies, MDPI, vol. 11(7), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:576-:d:74628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.