IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i1p41-d86696.html
   My bibliography  Save this article

A Novel Voltage Control Scheme for Low-Voltage DC Distribution Systems Using Multi-Agent Systems

Author

Listed:
  • Trinh Phi Hai

    (School of Electrical Engineering, Kookmin University, 861-1, Jeongneung-dong, Seongbuk-gu, Seoul 02707, Korea)

  • Hector Cho

    (School of Electrical Engineering, Kookmin University, 861-1, Jeongneung-dong, Seongbuk-gu, Seoul 02707, Korea)

  • Il-Yop Chung

    (School of Electrical Engineering, Kookmin University, 861-1, Jeongneung-dong, Seongbuk-gu, Seoul 02707, Korea)

  • Hyun-Koo Kang

    (Korea Electric Power Research Institute (KEPRI), 105 Munji-ro, Yuseong-gu, Daejeon 34056, Korea)

  • Jintae Cho

    (Korea Electric Power Research Institute (KEPRI), 105 Munji-ro, Yuseong-gu, Daejeon 34056, Korea)

  • Juyong Kim

    (Korea Electric Power Research Institute (KEPRI), 105 Munji-ro, Yuseong-gu, Daejeon 34056, Korea)

Abstract

Low-voltage direct current (LVDC) distribution systems have been evolving into interesting ways of integrating distributed energy resources (DERs) and power electronics loads to local distribution networks. In LVDC distribution systems, voltage regulation is one of the most important issues, whereas AC systems have concerns such as frequency, power factor, reactive power, harmonic distortion and so on. This paper focuses on a voltage control method for a LVDC distribution system based on the concept of multi-agent system (MAS), which can deploy intelligence and decision-making abilities to local areas. This paper proposes a distributed power flow analysis method using local information refined by local agents and communication between agents based on MAS. This paper also proposes a voltage control method by coordinating the main AC/DC converter and multiple DERs. By using the proposed method, we can effectively maintain the line voltages in a pre-defined normal range. The performance of the proposed voltage control method is evaluated by case studies and compared to conventional methods.

Suggested Citation

  • Trinh Phi Hai & Hector Cho & Il-Yop Chung & Hyun-Koo Kang & Jintae Cho & Juyong Kim, 2017. "A Novel Voltage Control Scheme for Low-Voltage DC Distribution Systems Using Multi-Agent Systems," Energies, MDPI, vol. 10(1), pages 1-20, January.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:41-:d:86696
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/1/41/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/1/41/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Justo, Jackson John & Mwasilu, Francis & Lee, Ju & Jung, Jin-Woo, 2013. "AC-microgrids versus DC-microgrids with distributed energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 387-405.
    2. Hyun-Koo Kang & Il-Yop Chung & Seung-Il Moon, 2015. "Voltage Control Method Using Distributed Generators Based on a Multi-Agent System," Energies, MDPI, vol. 8(12), pages 1-17, December.
    3. Jong-Chan Choi & Ho-Yong Jeong & Jin-Young Choi & Dong-Jun Won & Seon-Ju Ahn & Seung-il Moon, 2014. "Voltage Control Scheme with Distributed Generation and Grid Connected Converter in a DC Microgrid," Energies, MDPI, vol. 7(10), pages 1-15, October.
    4. Palizban, Omid & Kauhaniemi, Kimmo, 2015. "Hierarchical control structure in microgrids with distributed generation: Island and grid-connected mode," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 797-813.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yicong Wang & Chang Liu & Ji Han & Haoyu Tan & Fangchao Ke & Dongyin Zhang & Cong Wei & Shihong Miao, 2022. "A Distributed Frequency Regulation Method for Multi-Area Power System Considering Optimization of Communication Structure," Energies, MDPI, vol. 15(18), pages 1-18, September.
    2. Mir Sayed Shah Danish & Tomonobu Senjyu & Sayed Mir Shah Danish & Najib Rahman Sabory & Narayanan K & Paras Mandal, 2019. "A Recap of Voltage Stability Indices in the Past Three Decades," Energies, MDPI, vol. 12(8), pages 1-18, April.
    3. Phi-Hai Trinh & Il-Yop Chung, 2021. "Optimal Control Strategy for Distributed Energy Resources in a DC Microgrid for Energy Cost Reduction and Voltage Regulation," Energies, MDPI, vol. 14(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kitson, J. & Williamson, S.J. & Harper, P.W. & McMahon, C.A. & Rosenberg, G. & Tierney, M.J. & Bell, K. & Gautam, B., 2018. "Modelling of an expandable, reconfigurable, renewable DC microgrid for off-grid communities," Energy, Elsevier, vol. 160(C), pages 142-153.
    2. Roslan, M.F. & Hannan, M.A. & Ker, Pin Jern & Uddin, M.N., 2019. "Microgrid control methods toward achieving sustainable energy management," Applied Energy, Elsevier, vol. 240(C), pages 583-607.
    3. Burmester, Daniel & Rayudu, Ramesh & Seah, Winston & Akinyele, Daniel, 2017. "A review of nanogrid topologies and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 760-775.
    4. Unamuno, Eneko & Barrena, Jon Andoni, 2015. "Hybrid ac/dc microgrids—Part I: Review and classification of topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1251-1259.
    5. Unamuno, Eneko & Barrena, Jon Andoni, 2015. "Hybrid ac/dc microgrids—Part II: Review and classification of control strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1123-1134.
    6. Villanueva-Rosario, Junior Alexis & Santos-García, Félix & Aybar-Mejía, Miguel Euclides & Mendoza-Araya, Patricio & Molina-García, Angel, 2022. "Coordinated ancillary services, market participation and communication of multi-microgrids: A review," Applied Energy, Elsevier, vol. 308(C).
    7. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    8. Bizhani, Hamed & Noroozian, Reza & Muyeen, S.M. & Blaabjerg, Frede, 2022. "Grid integration of multiple wind turbines using a multi-port converter—A novel simultaneous space vector modulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    9. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    10. Bui, Duong Minh & Chen, Shi-Lin & Lien, Keng-Yu & Chang, Yung-Ruei & Lee, Yih-Der & Jiang, Jheng-Lun, 2017. "Investigation on transient behaviours of a uni-grounded low-voltage AC microgrid and evaluation on its available fault protection methods: Review and proposals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1417-1452.
    11. Hosseini, Seyed Amir & Abyaneh, Hossein Askarian & Sadeghi, Seyed Hossein Hesamedin & Razavi, Farzad & Nasiri, Adel, 2016. "An overview of microgrid protection methods and the factors involved," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 174-186.
    12. Navid Bayati & Mehdi Savaghebi, 2021. "Protection Systems for DC Shipboard Microgrids," Energies, MDPI, vol. 14(17), pages 1-20, August.
    13. Konečná, Eva & Teng, Sin Yong & Máša, Vítězslav, 2020. "New insights into the potential of the gas microturbine in microgrids and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    14. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    15. Bustos, Cristian & Watts, David, 2017. "Novel methodology for microgrids in isolated communities: Electricity cost-coverage trade-off with 3-stage technology mix, dispatch & configuration optimizations," Applied Energy, Elsevier, vol. 195(C), pages 204-221.
    16. Justo, Jackson John & Mwasilu, Francis & Jung, Jin-Woo, 2015. "Doubly-fed induction generator based wind turbines: A comprehensive review of fault ride-through strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 447-467.
    17. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    18. Rezaee Jordehi, Ahmad, 2016. "Allocation of distributed generation units in electric power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 893-905.
    19. Jeziel Vázquez & Elias J. J. Rodriguez & Jaime Arau & Nimrod Vázquez, 2021. "A di/dt Detection Circuit for DC Unidirectional Breaker Based on Inductor Transient Behaviour," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    20. Kinnon, Michael Mac & Razeghi, Ghazal & Samuelsen, Scott, 2021. "The role of fuel cells in port microgrids to support sustainable goods movement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:41-:d:86696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.