IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p992-d499111.html
   My bibliography  Save this article

Optimal Control Strategy for Distributed Energy Resources in a DC Microgrid for Energy Cost Reduction and Voltage Regulation

Author

Listed:
  • Phi-Hai Trinh

    (School of Electrical Engineering, Kookmin University, 861-1, Jeongneung-dong, Seongbuk-gu, Seoul 02707, Korea)

  • Il-Yop Chung

    (School of Electrical Engineering, Kookmin University, 861-1, Jeongneung-dong, Seongbuk-gu, Seoul 02707, Korea)

Abstract

Distributed energy resources (DERs), including renewable energy resources (RESs) and electric vehicles (EVs), have a significant impact on distribution systems because they can cause bi-directional power flow in the distribution lines. Thus, the voltage regulation and thermal limits of the distribution system to mitigate from the excessive power generation or consumption should be considered. The focus of this study is on a control strategy for DERs in low-voltage DC microgrids to minimize the operating costs and maintain the distribution voltage within the normal range based on intelligent scheduling of the charging and discharging of EVs, and to take advantage of RESs such as photovoltaic (PV) plants. By considering the time-of-use electricity rates, we also propose a 24-h sliding window to mitigate uncertainties in loads and PV plants in which the output is time-varied and the EV arrival cannot be predicted. After obtaining a request from the EV owner, the proposed optimal DER control method satisfies the state-of-charge level for their next journey. We applied the voltage sensitivity factor obtained from a load-flow analysis to effectively maintain voltage profiles for the overall DC distribution system. The performance of the proposed optimal DER control method was evaluated with case studies and by comparison with conventional methods.

Suggested Citation

  • Phi-Hai Trinh & Il-Yop Chung, 2021. "Optimal Control Strategy for Distributed Energy Resources in a DC Microgrid for Energy Cost Reduction and Voltage Regulation," Energies, MDPI, vol. 14(4), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:992-:d:499111
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/992/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/992/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Munir Husein & Il-Yop Chung, 2019. "Day-Ahead Solar Irradiance Forecasting for Microgrids Using a Long Short-Term Memory Recurrent Neural Network: A Deep Learning Approach," Energies, MDPI, vol. 12(10), pages 1-21, May.
    2. Zhang, Qi & Ishihara, Keiichi N. & Mclellan, Benjamin C. & Tezuka, Tetsuo, 2012. "Scenario analysis on future electricity supply and demand in Japan," Energy, Elsevier, vol. 38(1), pages 376-385.
    3. Trinh Phi Hai & Hector Cho & Il-Yop Chung & Hyun-Koo Kang & Jintae Cho & Juyong Kim, 2017. "A Novel Voltage Control Scheme for Low-Voltage DC Distribution Systems Using Multi-Agent Systems," Energies, MDPI, vol. 10(1), pages 1-20, January.
    4. Leehter Yao & Zolboo Damiran & Wei Hong Lim, 2017. "Optimal Charging and Discharging Scheduling for Electric Vehicles in a Parking Station with Photovoltaic System and Energy Storage System," Energies, MDPI, vol. 10(4), pages 1-20, April.
    5. Soares M.C. Borba, Bruno & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil," Energy, Elsevier, vol. 37(1), pages 469-481.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daud Mustafa Minhas & Josef Meiers & Georg Frey, 2022. "Electric Vehicle Battery Storage Concentric Intelligent Home Energy Management System Using Real Life Data Sets," Energies, MDPI, vol. 15(5), pages 1-29, February.
    2. Jeziel Vázquez & Elias J. J. Rodriguez & Jaime Arau & Nimrod Vázquez, 2021. "A di/dt Detection Circuit for DC Unidirectional Breaker Based on Inductor Transient Behaviour," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    3. Yuriy Bilan & Marcin Rabe & Katarzyna Widera, 2022. "Distributed Energy Resources: Operational Benefits," Energies, MDPI, vol. 15(23), pages 1-7, November.
    4. Maria Fotopoulou & Dimitrios Rakopoulos & Dimitrios Trigkas & Fotis Stergiopoulos & Orestis Blanas & Spyros Voutetakis, 2021. "State of the Art of Low and Medium Voltage Direct Current (DC) Microgrids," Energies, MDPI, vol. 14(18), pages 1-27, September.
    5. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    6. Luis Fernando Grisales-Noreña & Bonie Johana Restrepo-Cuestas & Brandon Cortés-Caicedo & Jhon Montano & Andrés Alfonso Rosales-Muñoz & Marco Rivera, 2022. "Optimal Location and Sizing of Distributed Generators and Energy Storage Systems in Microgrids: A Review," Energies, MDPI, vol. 16(1), pages 1-30, December.
    7. Zongjie Wang & C. Lindsay Anderson, 2021. "A Progressive Period Optimal Power Flow for Systems with High Penetration of Variable Renewable Energy Sources," Energies, MDPI, vol. 14(10), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "A methodology for economic and environmental analysis of electric vehicles with different operational conditions," Energy, Elsevier, vol. 61(C), pages 118-127.
    2. Honarmand, Masoud & Zakariazadeh, Alireza & Jadid, Shahram, 2014. "Optimal scheduling of electric vehicles in an intelligent parking lot considering vehicle-to-grid concept and battery condition," Energy, Elsevier, vol. 65(C), pages 572-579.
    3. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    4. Mohsen Beigi & Hossein Beigi Harchegani & Mehdi Torki & Mohammad Kaveh & Mariusz Szymanek & Esmail Khalife & Jacek Dziwulski, 2022. "Forecasting of Power Output of a PVPS Based on Meteorological Data Using RNN Approaches," Sustainability, MDPI, vol. 14(5), pages 1-12, March.
    5. Perwez, Usama & Sohail, Ahmed & Hassan, Syed Fahad & Zia, Usman, 2015. "The long-term forecast of Pakistan's electricity supply and demand: An application of long range energy alternatives planning," Energy, Elsevier, vol. 93(P2), pages 2423-2435.
    6. Muhammad Kashif Rafique & Zunaib Maqsood Haider & Khawaja Khalid Mehmood & Muhammad Saeed Uz Zaman & Muhammad Irfan & Saad Ullah Khan & Chul-Hwan Kim, 2018. "Optimal Scheduling of Hybrid Energy Resources for a Smart Home," Energies, MDPI, vol. 11(11), pages 1-19, November.
    7. Aghajani, Saemeh & Kalantar, Mohsen, 2017. "Optimal scheduling of distributed energy resources in smart grids: A complementarity approach," Energy, Elsevier, vol. 141(C), pages 2135-2144.
    8. Min, Daiki & Chung, Jaewoo, 2013. "Evaluation of the long-term power generation mix: The case study of South Korea's energy policy," Energy Policy, Elsevier, vol. 62(C), pages 1544-1552.
    9. Niematallah Elamin & Mototsugu Fukushige, 2017. "The 2011 Japanese energy crisis: Effects on the magnitude and pattern of load demand," Discussion Papers in Economics and Business 17-19, Osaka University, Graduate School of Economics.
    10. Bellekom, Sandra & Benders, René & Pelgröm, Steef & Moll, Henk, 2012. "Electric cars and wind energy: Two problems, one solution? A study to combine wind energy and electric cars in 2020 in The Netherlands," Energy, Elsevier, vol. 45(1), pages 859-866.
    11. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
    12. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
    13. Vu, Ba Hau & Chung, Il-Yop, 2022. "Optimal generation scheduling and operating reserve management for PV generation using RNN-based forecasting models for stand-alone microgrids," Renewable Energy, Elsevier, vol. 195(C), pages 1137-1154.
    14. Malagueta, Diego & Szklo, Alexandre & Borba, Bruno Soares Moreira Cesar & Soria, Rafael & Aragão, Raymundo & Schaeffer, Roberto & Dutra, Ricardo, 2013. "Assessing incentive policies for integrating centralized solar power generation in the Brazilian electric power system," Energy Policy, Elsevier, vol. 59(C), pages 198-212.
    15. Caballero, F. & Sauma, E. & Yanine, F., 2013. "Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island's block," Energy, Elsevier, vol. 61(C), pages 248-261.
    16. Ashique, Ratil H. & Salam, Zainal & Bin Abdul Aziz, Mohd Junaidi & Bhatti, Abdul Rauf, 2017. "Integrated photovoltaic-grid dc fast charging system for electric vehicle: A review of the architecture and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1243-1257.
    17. Laha, Priyanka & Chakraborty, Basab, 2021. "Low carbon electricity system for India in 2030 based on multi-objective multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    19. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    20. Purwanto, Widodo Wahyu & Pratama, Yoga Wienda & Nugroho, Yulianto Sulistyo & Warjito, & Hertono, Gatot Fatwanto & Hartono, Djoni & Deendarlianto, & Tezuka, Tetsuo, 2015. "Multi-objective optimization model for sustainable Indonesian electricity system: Analysis of economic, environment, and adequacy of energy sources," Renewable Energy, Elsevier, vol. 81(C), pages 308-318.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:992-:d:499111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.