IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i7p560-d74226.html
   My bibliography  Save this article

Risk Assessment of Distribution Networks Considering the Charging-Discharging Behaviors of Electric Vehicles

Author

Listed:
  • Jun Yang

    (School of Electrical Engineering, Wuhan University, Wuhan 430072, Hubei, China)

  • Wanmeng Hao

    (School of Electrical Engineering, Wuhan University, Wuhan 430072, Hubei, China)

  • Lei Chen

    (School of Electrical Engineering, Wuhan University, Wuhan 430072, Hubei, China)

  • Jiejun Chen

    (School of Electrical Engineering, Wuhan University, Wuhan 430072, Hubei, China)

  • Jing Jin

    (State Grid Hubei Electric Power Company, Wuhan 430077, Hubei, China)

  • Feng Wang

    (Computer School of Wuhan University, Wuhan 430072, Hubei, China)

Abstract

Electric vehicles (EVs) have received wide attention due to their higher energy efficiency and lower emissions. However, the random charging and discharging behaviors of substantial numbers of EVs may lead to safety risk problems in a distribution network. Reasonable price incentives can guide EVs through orderly charging and discharging, and further provide a feasible solution to reduce the operational risk of the distribution network. Considering three typical electricity prices, EV charging/discharging load models are built. Then, a Probabilistic Load Flow (PLF) method using cumulants and Gram-Charlier series is proposed to obtain the power flow of the distribution network including massive numbers of EVs. In terms of the risk indexes of node voltage and line flow, the operational risk of the distribution network can be estimated in detail. From the simulations of an IEEE-33 bus system and an IEEE 69-bus system, the demonstrated results show that reasonable charging and discharging prices are conducive to reducing the peak-valley difference, and consequently the risks of the distribution network can be decreased to a certain extent.

Suggested Citation

  • Jun Yang & Wanmeng Hao & Lei Chen & Jiejun Chen & Jing Jin & Feng Wang, 2016. "Risk Assessment of Distribution Networks Considering the Charging-Discharging Behaviors of Electric Vehicles," Energies, MDPI, vol. 9(7), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:7:p:560-:d:74226
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/7/560/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/7/560/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fernandes, Camila & Frías, Pablo & Latorre, Jesús M., 2012. "Impact of vehicle-to-grid on power system operation costs: The Spanish case study," Applied Energy, Elsevier, vol. 96(C), pages 194-202.
    2. Yinuo Huang & Chuangxin Guo & Yi Ding & Licheng Wang & Bingquan Zhu & Lizhong Xu, 2016. "A Multi-Period Framework for Coordinated Dispatch of Plug-in Electric Vehicles," Energies, MDPI, vol. 9(5), pages 1-16, May.
    3. Foley, Aoife & Tyther, Barry & Calnan, Patrick & Ó Gallachóir, Brian, 2013. "Impacts of Electric Vehicle charging under electricity market operations," Applied Energy, Elsevier, vol. 101(C), pages 93-102.
    4. Green II, Robert C. & Wang, Lingfeng & Alam, Mansoor, 2011. "The impact of plug-in hybrid electric vehicles on distribution networks: A review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 544-553, January.
    5. Yang, Zhile & Li, Kang & Foley, Aoife, 2015. "Computational scheduling methods for integrating plug-in electric vehicles with power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 396-416.
    6. Lixing Chen & Zhong Chen & Xueliang Huang & Long Jin, 2016. "A Study on Price-Based Charging Strategy for Electric Vehicles on Expressways," Energies, MDPI, vol. 9(5), pages 1-18, May.
    7. Salah, Florian & Ilg, Jens P. & Flath, Christoph M. & Basse, Hauke & Dinther, Clemens van, 2015. "Impact of electric vehicles on distribution substations: A Swiss case study," Applied Energy, Elsevier, vol. 137(C), pages 88-96.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Munan Li & Alan L. Porter, 2018. "Facilitating the discovery of relevant studies on risk analysis for three-dimensional printing based on an integrated framework," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(1), pages 277-300, January.
    2. Zain Anwer Memon & Riccardo Trinchero & Yanzhao Xie & Flavio G. Canavero & Igor S. Stievano, 2020. "An Iterative Scheme for the Power-Flow Analysis of Distribution Networks based on Decoupled Circuit Equivalents in the Phasor Domain," Energies, MDPI, vol. 13(2), pages 1-16, January.
    3. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    4. Yuttana Kongjeen & Krischonme Bhumkittipich, 2018. "Impact of Plug-in Electric Vehicles Integrated into Power Distribution System Based on Voltage-Dependent Power Flow Analysis," Energies, MDPI, vol. 11(6), pages 1-16, June.
    5. Chunlin Guo & Jingjing Yang & Lin Yang, 2018. "Planning of Electric Vehicle Charging Infrastructure for Urban Areas with Tight Land Supply," Energies, MDPI, vol. 11(9), pages 1-17, September.
    6. Bishnu P. Bhattarai & Kurt S. Myers & Birgitte Bak-Jensen & Sumit Paudyal, 2017. "Multi-Time Scale Control of Demand Flexibility in Smart Distribution Networks," Energies, MDPI, vol. 10(1), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weige Zhang & Di Zhang & Biqiang Mu & Le Yi Wang & Yan Bao & Jiuchun Jiang & Hugo Morais, 2017. "Decentralized Electric Vehicle Charging Strategies for Reduced Load Variation and Guaranteed Charge Completion in Regional Distribution Grids," Energies, MDPI, vol. 10(2), pages 1-19, January.
    2. He, Lifu & Yang, Jun & Yan, Jun & Tang, Yufei & He, Haibo, 2016. "A bi-layer optimization based temporal and spatial scheduling for large-scale electric vehicles," Applied Energy, Elsevier, vol. 168(C), pages 179-192.
    3. Raymond Kene & Thomas Olwal & Barend J. van Wyk, 2021. "Sustainable Electric Vehicle Transportation," Sustainability, MDPI, vol. 13(22), pages 1-16, November.
    4. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    5. Graabak, Ingeborg & Wu, Qiuwei & Warland, Leif & Liu, Zhaoxi, 2016. "Optimal planning of the Nordic transmission system with 100% electric vehicle penetration of passenger cars by 2050," Energy, Elsevier, vol. 107(C), pages 648-660.
    6. Shi You & Junjie Hu & Charalampos Ziras, 2016. "An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles †," Energies, MDPI, vol. 9(11), pages 1-18, November.
    7. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    8. Ivana Semanjski & Sidharta Gautama, 2016. "Forecasting the State of Health of Electric Vehicle Batteries to Evaluate the Viability of Car Sharing Practices," Energies, MDPI, vol. 9(12), pages 1-17, December.
    9. Crossin, Enda & Doherty, Peter J.B., 2016. "The effect of charging time on the comparative environmental performance of different vehicle types," Applied Energy, Elsevier, vol. 179(C), pages 716-726.
    10. Strobel, Leo & Schlund, Jonas & Pruckner, Marco, 2022. "Joint analysis of regional and national power system impacts of electric vehicles—A case study for Germany on the county level in 2030," Applied Energy, Elsevier, vol. 315(C).
    11. Qun Niu & Kecheng Jiang & Zhile Yang, 2019. "An Improved, Negatively Correlated Search for Solving the Unit Commitment Problem’s Integration with Electric Vehicles," Sustainability, MDPI, vol. 11(24), pages 1-21, December.
    12. García-Villalobos, J. & Zamora, I. & San Martín, J.I. & Asensio, F.J. & Aperribay, V., 2014. "Plug-in electric vehicles in electric distribution networks: A review of smart charging approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 717-731.
    13. Jian, Linni & Zheng, Yanchong & Xiao, Xinping & Chan, C.C., 2015. "Optimal scheduling for vehicle-to-grid operation with stochastic connection of plug-in electric vehicles to smart grid," Applied Energy, Elsevier, vol. 146(C), pages 150-161.
    14. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M. & Jenkins, Nick & Carroll, Steve & Barker, Myles, 2016. "A data-driven approach for characterising the charging demand of electric vehicles: A UK case study," Applied Energy, Elsevier, vol. 162(C), pages 763-771.
    15. Mwasilu, Francis & Justo, Jackson John & Kim, Eun-Kyung & Do, Ton Duc & Jung, Jin-Woo, 2014. "Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 501-516.
    16. Schuller, Alexander & Flath, Christoph M. & Gottwalt, Sebastian, 2015. "Quantifying load flexibility of electric vehicles for renewable energy integration," Applied Energy, Elsevier, vol. 151(C), pages 335-344.
    17. Yang, Zhile & Li, Kang & Guo, Yuanjun & Feng, Shengzhong & Niu, Qun & Xue, Yusheng & Foley, Aoife, 2019. "A binary symmetric based hybrid meta-heuristic method for solving mixed integer unit commitment problem integrating with significant plug-in electric vehicles," Energy, Elsevier, vol. 170(C), pages 889-905.
    18. Gaizka Saldaña & Jose Ignacio San Martin & Inmaculada Zamora & Francisco Javier Asensio & Oier Oñederra, 2019. "Electric Vehicle into the Grid: Charging Methodologies Aimed at Providing Ancillary Services Considering Battery Degradation," Energies, MDPI, vol. 12(12), pages 1-37, June.
    19. Li, Ying & Davis, Chris & Lukszo, Zofia & Weijnen, Margot, 2016. "Electric vehicle charging in China’s power system: Energy, economic and environmental trade-offs and policy implications," Applied Energy, Elsevier, vol. 173(C), pages 535-554.
    20. Chung, Yu-Wei & Khaki, Behnam & Li, Tianyi & Chu, Chicheng & Gadh, Rajit, 2019. "Ensemble machine learning-based algorithm for electric vehicle user behavior prediction," Applied Energy, Elsevier, vol. 254(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:7:p:560-:d:74226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.