IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i1p122-d88255.html
   My bibliography  Save this article

Nanostructure and Oxidation Reactivity of Nascent Soot Particles in Ethylene/Pentanol Flames

Author

Listed:
  • Yaoyao Ying

    (MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
    Advanced Combustion Laboratory, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
    These authors contributed equally to this work.)

  • Chenxuan Xu

    (Advanced Combustion Laboratory, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
    These authors contributed equally to this work.)

  • Dong Liu

    (MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
    Advanced Combustion Laboratory, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

  • Bo Jiang

    (MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
    Advanced Combustion Laboratory, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

  • Pengfei Wang

    (MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
    Advanced Combustion Laboratory, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

  • Wei Wang

    (MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
    Advanced Combustion Laboratory, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

Abstract

As byproducts of the combustion process of hydrocarbon fuels, soot particles are difficult to remove, and they can greatly harm human health and pollute the environment. Therefore, the formation and growth processes of the soot particles has become a study focus of researchers. In this paper, the nanostructure and oxidation reactivity of carbonaceous particles collected from ethylene inverse diffusion flames with or without the additions of three pentanol isomers (1-pentanol, 3-methyl-1-butanol, and 2-methyl-1-butanol) were investigated in detail. The nanostructure and oxidation characteristics of nascent soot particles were characterized using high resolution transmission electron microscopy (HRTEM), X-ray diffractometry (XRD) and thermogravimetric analysis (TGA). It was found that the nascent soot cluster of pure ethylene flame had a loose structure, while the additions of pentanol isomers made the soot agglomerates more compact and delayed the growth of graphitic structures. The pentanol isomer additions also contributed to a higher disorder of the crystallite arrangement in the soot nanostructure. According to the TGA experiments, the results showed that the addition of pentanol isomers enhanced the oxidation reactivity of soot particles, which could help to reduce soot particle emissions.

Suggested Citation

  • Yaoyao Ying & Chenxuan Xu & Dong Liu & Bo Jiang & Pengfei Wang & Wei Wang, 2017. "Nanostructure and Oxidation Reactivity of Nascent Soot Particles in Ethylene/Pentanol Flames," Energies, MDPI, vol. 10(1), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:122-:d:88255
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/1/122/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/1/122/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Najafi, G. & Ghobadian, B. & Tavakoli, T. & Buttsworth, D.R. & Yusaf, T.F. & Faizollahnejad, M., 2009. "Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network," Applied Energy, Elsevier, vol. 86(5), pages 630-639, May.
    2. Wei, Liangjie & Cheung, C.S. & Huang, Zuohua, 2014. "Effect of n-pentanol addition on the combustion, performance and emission characteristics of a direct-injection diesel engine," Energy, Elsevier, vol. 70(C), pages 172-180.
    3. Zhang, Zhi-Hui & Balasubramanian, Rajasekhar, 2014. "Influence of butanol addition to diesel–biodiesel blend on engine performance and particulate emissions of a stationary diesel engine," Applied Energy, Elsevier, vol. 119(C), pages 530-536.
    4. Rakopoulos, C.D. & Antonopoulos, K.A. & Rakopoulos, D.C., 2007. "Experimental heat release analysis and emissions of a HSDI diesel engine fueled with ethanol–diesel fuel blends," Energy, Elsevier, vol. 32(10), pages 1791-1808.
    5. Campos-Fernández, Javier & Arnal, Juan M. & Gómez, Jose & Dorado, M. Pilar, 2012. "A comparison of performance of higher alcohols/diesel fuel blends in a diesel engine," Applied Energy, Elsevier, vol. 95(C), pages 267-275.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duan, Jiaqi & Ying, Yaoyao & Liu, Dong, 2019. "Novel nanoscale control on soot formation by local CO2 micro-injection in ethylene inverse diffusion flames," Energy, Elsevier, vol. 179(C), pages 697-708.
    2. Yuehan Qiao & Gang Lyu & Chonglin Song & Xingyu Liang & Huawei Zhang & Dong Dong, 2019. "Optimization of Programmed Temperature Vaporization Injection for Determination of Polycyclic Aromatic Hydrocarbons from Diesel Combustion Process," Energies, MDPI, vol. 12(24), pages 1-13, December.
    3. Luo, Minye & Liu, Dong, 2018. "Effects of dimethyl ether addition on soot formation, evolution and characteristics in flame-wall interactions," Energy, Elsevier, vol. 164(C), pages 642-654.
    4. Wei Wang & Dong Liu & Yaoyao Ying & Guannan Liu & Ye Wu, 2017. "On the Response of Nascent Soot Nanostructure and Oxidative Reactivity to Photoflash Exposure," Energies, MDPI, vol. 10(7), pages 1-11, July.
    5. Bo Jiang & Pengfei Wang & Yaoyao Ying & Minye Luo & Dong Liu, 2018. "Nanoscale Characteristics and Reactivity of Nascent Soot from n -Heptane/2,5-Dimethylfuran Inverse Diffusion Flames with/without Magnetic Fields," Energies, MDPI, vol. 11(7), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Wei, Liangjie & Cheung, C.S. & Huang, Zuohua, 2014. "Effect of n-pentanol addition on the combustion, performance and emission characteristics of a direct-injection diesel engine," Energy, Elsevier, vol. 70(C), pages 172-180.
    3. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
    4. Manju Dhakad Tanwar & Felipe Andrade Torres & Ali Mubarak Alqahtani & Pankaj Kumar Tanwar & Yashas Bhand & Omid Doustdar, 2023. "Promising Bioalcohols for Low-Emission Vehicles," Energies, MDPI, vol. 16(2), pages 1-22, January.
    5. Li, Bowen & Li, Yanfei & Liu, Haoye & Liu, Fang & Wang, Zhi & Wang, Jianxin, 2017. "Combustion and emission characteristics of diesel engine fueled with biodiesel/PODE blends," Applied Energy, Elsevier, vol. 206(C), pages 425-431.
    6. Zhang, Zhi-Hui & Balasubramanian, Rajasekhar, 2016. "Investigation of particulate emission characteristics of a diesel engine fueled with higher alcohols/biodiesel blends," Applied Energy, Elsevier, vol. 163(C), pages 71-80.
    7. Rajesh Kumar, B. & Saravanan, S. & Rana, D. & Nagendran, A., 2016. "Use of some advanced biofuels for overcoming smoke/NOx trade-off in a light-duty DI diesel engine," Renewable Energy, Elsevier, vol. 96(PA), pages 687-699.
    8. Chen, Longfei & Ding, Shirun & Liu, Haoye & Lu, Yiji & Li, Yanfei & Roskilly, Anthony Paul, 2017. "Comparative study of combustion and emissions of kerosene (RP-3), kerosene-pentanol blends and diesel in a compression ignition engine," Applied Energy, Elsevier, vol. 203(C), pages 91-100.
    9. Rajesh Kumar, B. & Saravanan, S., 2016. "Use of higher alcohol biofuels in diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 84-115.
    10. Ma, Yinjie & Huang, Sheng & Huang, Ronghua & Zhang, Yu & Xu, Shijie, 2017. "Ignition and combustion characteristics of n-pentanol–diesel blends in a constant volume chamber," Applied Energy, Elsevier, vol. 185(P1), pages 519-530.
    11. Geng, Peng & Cao, Erming & Tan, Qinming & Wei, Lijiang, 2017. "Effects of alternative fuels on the combustion characteristics and emission products from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 523-534.
    12. Ganesha Thippeshnaik & Sajjal Basanna Prakash & Ajith Bintravalli Suresh & Manjunath Patel Gowdru Chandrashekarappa & Olusegun David Samuel & Oguzhan Der & Ali Ercetin, 2023. "Experimental Investigation of Compression Ignition Engine Combustion, Performance, and Emission Characteristics of Ternary Blends with Higher Alcohols (1-Heptanol and n -Octanol)," Energies, MDPI, vol. 16(18), pages 1-25, September.
    13. Li, Li & Wang, Jianxin & Wang, Zhi & Liu, Haoye, 2015. "Combustion and emissions of compression ignition in a direct injection diesel engine fueled with pentanol," Energy, Elsevier, vol. 80(C), pages 575-581.
    14. Nadir Yilmaz & Francisco M. Vigil & Alpaslan Atmanli & Burl Donaldson, 2022. "Detailed Analysis of PAH Formation, Toxicity and Regulated Pollutants in a Diesel Engine Running on Diesel Blends with n-Propanol, n-Butanol and n-Pentanol," Energies, MDPI, vol. 15(17), pages 1-14, September.
    15. M, Vinod Babu & K, Madhu Murthy & G, Amba Prasad Rao, 2017. "Butanol and pentanol: The promising biofuels for CI engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1068-1088.
    16. Herreros, J.M. & Schroer, K. & Sukjit, E. & Tsolakis, A., 2015. "Extending the environmental benefits of ethanol–diesel blends through DGE incorporation," Applied Energy, Elsevier, vol. 146(C), pages 335-343.
    17. Liu, Xinlei & Wang, Hu & Zheng, Zunqing & Liu, Jialin & Reitz, Rolf D. & Yao, Mingfa, 2016. "Development of a combined reduced primary reference fuel-alcohols (methanol/ethanol/propanols/butanols/n-pentanol) mechanism for engine applications," Energy, Elsevier, vol. 114(C), pages 542-558.
    18. Mukhtar, M.N.A. & Hagos, Ftwi Y. & Noor, M.M. & Mamat, Rizalman & Abdullah, A. Adam & Abd Aziz, Abd Rashid, 2019. "Tri-fuel emulsion with secondary atomization attributes for greener diesel engine – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 490-506.
    19. Siva Krishna Reddy Dwarshala & Siva Subramaniam Rajakumar & Obula Reddy Kummitha & Elumalai Perumal Venkatesan & Ibham Veza & Olusegun David Samuel, 2023. "A Review on Recent Developments of RCCI Engines Operated with Alternative Fuels," Energies, MDPI, vol. 16(7), pages 1-27, April.
    20. Bora, Plaban & Konwar, Lakhya Jyoti & Boro, Jutika & Phukan, Mayur Mausoom & Deka, Dhanapati & Konwar, Bolin Kumar, 2014. "Hybrid biofuels from non-edible oils: A comparative standpoint with corresponding biodiesel," Applied Energy, Elsevier, vol. 135(C), pages 450-460.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:122-:d:88255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.