IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1698-d155495.html
   My bibliography  Save this article

Nanoscale Characteristics and Reactivity of Nascent Soot from n -Heptane/2,5-Dimethylfuran Inverse Diffusion Flames with/without Magnetic Fields

Author

Listed:
  • Bo Jiang

    (MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
    Advanced Combustion Laboratory, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

  • Pengfei Wang

    (MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
    Advanced Combustion Laboratory, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

  • Yaoyao Ying

    (MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
    Advanced Combustion Laboratory, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

  • Minye Luo

    (MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
    Advanced Combustion Laboratory, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

  • Dong Liu

    (MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
    Advanced Combustion Laboratory, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

Abstract

In this study, the differences of nanostructure and oxidation reactivity of the nascent soot formed in n -heptane/2,5-dimethylfuran (DMF) inverse diffusion flames (IDF) with/without influence of magnetic fields were studied, and the effects of DMF-doped and magnetic fields were discussed. Morphology and nanostructures of the soot samples were investigated using high-resolution transmission electron spectroscopy and X-ray diffraction, and the oxidation reactivity characteristics were analyzed by thermogravimetric analyzer. Results demonstrated that both additions of DMF-doped and magnetic fields could promote soot production and modify the soot nanostructure and oxidation reactivity in IDF. Soot production increased along with the increase of DMF-doped. With DMF blends, more clustered soot particles and typical core-shell structures with well-organized fringes were exhibited compared with that formed from the pure n -heptane IDF. With effects of magnetic fields, the precursor formation and the oxidization of soot were promoted, soot production was enhanced. Soot particles became relatively more mature with typical core-shell structure, thicker shell, longer fringe lengths, smaller fringe tortuosity, higher graphitization degree and lower oxidation reactivity. With magnetic force pointed to the central line and the inner direction of IDF under the conditions of N pole and S pole of the magnet facing the flame, oxygen was trapped, having an increased residence time to get more chance to react with the fuel molecules to cause more soot to be yielded and oxidized. That resulted in the soot precursor promotion, soot production enhancement, and soot part-oxidization and graphitization.

Suggested Citation

  • Bo Jiang & Pengfei Wang & Yaoyao Ying & Minye Luo & Dong Liu, 2018. "Nanoscale Characteristics and Reactivity of Nascent Soot from n -Heptane/2,5-Dimethylfuran Inverse Diffusion Flames with/without Magnetic Fields," Energies, MDPI, vol. 11(7), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1698-:d:155495
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1698/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1698/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shota Atsumi & Taizo Hanai & James C. Liao, 2008. "Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels," Nature, Nature, vol. 451(7174), pages 86-89, January.
    2. Yaoyao Ying & Chenxuan Xu & Dong Liu & Bo Jiang & Pengfei Wang & Wei Wang, 2017. "Nanostructure and Oxidation Reactivity of Nascent Soot Particles in Ethylene/Pentanol Flames," Energies, MDPI, vol. 10(1), pages 1-16, January.
    3. Wei Wang & Dong Liu & Yaoyao Ying & Guannan Liu & Ye Wu, 2017. "On the Response of Nascent Soot Nanostructure and Oxidative Reactivity to Photoflash Exposure," Energies, MDPI, vol. 10(7), pages 1-11, July.
    4. Chen, Guisheng & Shen, Yinggang & Zhang, Quanchang & Yao, Mingfa & Zheng, Zunqing & Liu, Haifeng, 2013. "Experimental study on combustion and emission characteristics of a diesel engine fueled with 2,5-dimethylfuran–diesel, n-butanol–diesel and gasoline–diesel blends," Energy, Elsevier, vol. 54(C), pages 333-342.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Minye & Liu, Dong, 2018. "Effects of dimethyl ether addition on soot formation, evolution and characteristics in flame-wall interactions," Energy, Elsevier, vol. 164(C), pages 642-654.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Jiaqi & Ying, Yaoyao & Liu, Dong, 2019. "Novel nanoscale control on soot formation by local CO2 micro-injection in ethylene inverse diffusion flames," Energy, Elsevier, vol. 179(C), pages 697-708.
    2. Elfasakhany, Ashraf, 2017. "Investigations on performance and pollutant emissions of spark-ignition engines fueled with n-butanol–, isobutanol–, ethanol–, methanol–, and acetone–gasoline blends: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 404-413.
    3. Qian, Yong & Zhu, Lifeng & Wang, Yue & Lu, Xingcai, 2015. "Recent progress in the development of biofuel 2,5-dimethylfuran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 633-646.
    4. Deb, Madhujit & Debbarma, Bishop & Majumder, Arindam & Banerjee, Rahul, 2016. "Performance –emission optimization of a diesel-hydrogen dual fuel operation: A NSGA II coupled TOPSIS MADM approach," Energy, Elsevier, vol. 117(P1), pages 281-290.
    5. Bose, Probir Kumar & Deb, Madhujit & Banerjee, Rahul & Majumder, Arindam, 2013. "Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a Taguchi-fuzzy based approach," Energy, Elsevier, vol. 63(C), pages 375-386.
    6. Zheng, Zunqing & Wang, XiaoFeng & Zhong, Xiaofan & Hu, Bin & Liu, Haifeng & Yao, Mingfa, 2016. "Experimental study on the combustion and emissions fueling biodiesel/n-butanol, biodiesel/ethanol and biodiesel/2,5-dimethylfuran on a diesel engine," Energy, Elsevier, vol. 115(P1), pages 539-549.
    7. Nestor Sanchez & Ruth Yolanda Ruiz & Nicolas Infante & Martha Cobo, 2017. "Bioethanol Production from Cachaza as Hydrogen Feedstock: Effect of Ammonium Sulfate during Fermentation," Energies, MDPI, vol. 10(12), pages 1-16, December.
    8. Huang, Haozhong & Zhou, Chengzhong & Liu, Qingsheng & Wang, Qingxin & Wang, Xueqiang, 2016. "An experimental study on the combustion and emission characteristics of a diesel engine under low temperature combustion of diesel/gasoline/n-butanol blends," Applied Energy, Elsevier, vol. 170(C), pages 219-231.
    9. Liu, Yang & Cheng, Xiaobei & Qin, Longjiang & Wang, Xin & Yao, Junjie & Wu, Hui, 2020. "Experimental investigation on soot formation characteristics of n-heptane/butanol isomers blends in laminar diffusion flames," Energy, Elsevier, vol. 211(C).
    10. Chang, Yu-Cheng & Lee, Wen-Jhy & Wu, Tser Son & Wu, Chang-Yu & Chen, Shui-Jen, 2014. "Use of water containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel," Energy, Elsevier, vol. 64(C), pages 678-687.
    11. Kumar, Gopal Ramesh & Chowdhary, Nupoor, 2016. "Biotechnological and bioinformatics approaches for augmentation of biohydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1194-1206.
    12. Waleed Iqbal & Muhammad Zahir Afridi & Aftab Jamal & Adil Mihoub & Muhammad Farhan Saeed & Árpád Székely & Adil Zia & Muhammad Awais Khan & Alfredo Jarma-Orozco & Marcelo F. Pompelli, 2022. "Canola Seed Priming and Its Effect on Gas Exchange, Chlorophyll Photobleaching, and Enzymatic Activities in Response to Salt Stress," Sustainability, MDPI, vol. 14(15), pages 1-22, July.
    13. Mack, J. Hunter & Schuler, Daniel & Butt, Ryan H. & Dibble, Robert W., 2016. "Experimental investigation of butanol isomer combustion in Homogeneous Charge Compression Ignition (HCCI) engines," Applied Energy, Elsevier, vol. 165(C), pages 612-626.
    14. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    15. Mazen A. Eldeeb & Benjamin Akih-Kumgeh, 2018. "Recent Trends in the Production, Combustion and Modeling of Furan-Based Fuels," Energies, MDPI, vol. 11(3), pages 1-47, February.
    16. Yuehan Qiao & Gang Lyu & Chonglin Song & Xingyu Liang & Huawei Zhang & Dong Dong, 2019. "Optimization of Programmed Temperature Vaporization Injection for Determination of Polycyclic Aromatic Hydrocarbons from Diesel Combustion Process," Energies, MDPI, vol. 12(24), pages 1-13, December.
    17. Deb, Madhujit & Paul, Abhishek & Debroy, Durbadal & Sastry, G.R.K. & Panua, Raj Sekhar & Bose, P.K., 2015. "An experimental investigation of performance-emission trade off characteristics of a CI engine using hydrogen as dual fuel," Energy, Elsevier, vol. 85(C), pages 569-585.
    18. Deng, Banglin & Yang, Jing & Zhang, Daming & Feng, Renhua & Fu, Jianqin & Liu, Jingping & Li, Ke & Liu, Xiaoqiang, 2013. "The challenges and strategies of butanol application in conventional engines: The sensitivity study of ignition and valve timing," Applied Energy, Elsevier, vol. 108(C), pages 248-260.
    19. Chengzhang Fu & Yunkun Liu & Christine Walt & Sari Rasheed & Chantal D. Bader & Peer Lukat & Markus Neuber & F. P. Jake Haeckl & Wulf Blankenfeldt & Olga V. Kalinina & Rolf Müller, 2024. "Elucidation of unusual biosynthesis and DnaN-targeting mode of action of potent anti-tuberculosis antibiotics Mycoplanecins," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Shihui Yang & Wei Wang & Hui Wei & Stefanie Van Wychen & Philip T. Pienkos & Min Zhang & Michael E. Himmel, 2016. "Comparison of Nitrogen Depletion and Repletion on Lipid Production in Yeast and Fungal Species," Energies, MDPI, vol. 9(9), pages 1-12, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1698-:d:155495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.