IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p1980-d121039.html
   My bibliography  Save this article

A Multifunctional Isolated and Non-Isolated Dual Mode Converter for Renewable Energy Conversion Applications

Author

Listed:
  • Yiwang Wang

    (Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    School of Electronic and Information Engineering, Suzhou Vocational University, Suzhou 215104, China)

  • Chun Gan

    (Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN 37996, USA)

  • Kai Ni

    (Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK)

  • Xinhua Li

    (Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK)

  • Houjun Tang

    (Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Yong Yang

    (School of Urban Rail Transportation, Soochow University, Suzhou 215137, China)

Abstract

In this paper, a multifunctional isolated and non-isolated dual-mode low-power converter was designed for renewable energy conversion applications such as photovoltaic power generation to achieve different operating modes under bi-directional electrical conversion. The proposed topology consists of a bidirectional non-isolated DC/DC circuit and an isolated converter with a high-frequency transformer, which merge the advantages of both the conventional isolated converter and non-isolated converter with the combination of the two converter technologies. Compared with traditional converters, the multifunctional converter can not only realize conventional bi-directional functions, but can also be applied for many different operation modes and meet the high output/input ratio demands with the two converter circuits operating together. A novel control algorithm was proposed to achieve the various functions of the proposed converter. An experimental platform based on the proposed circuit was established. Both the simulation and experimental results indicated that the proposed converter could provide isolated and non-isolated modes in different applications, which could meet different practical engineering requirements.

Suggested Citation

  • Yiwang Wang & Chun Gan & Kai Ni & Xinhua Li & Houjun Tang & Yong Yang, 2017. "A Multifunctional Isolated and Non-Isolated Dual Mode Converter for Renewable Energy Conversion Applications," Energies, MDPI, vol. 10(12), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:1980-:d:121039
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/1980/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/1980/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kou-Bin Liu & Chen-Yao Liu & Yi-Hua Liu & Yuan-Chen Chien & Bao-Sheng Wang & Yong-Seng Wong, 2016. "Analysis and Controller Design of a Universal Bidirectional DC-DC Converter," Energies, MDPI, vol. 9(7), pages 1-23, June.
    2. Il-Oun Lee & Jun-Young Lee, 2017. "A High-Power DC-DC Converter Topology for Battery Charging Applications," Energies, MDPI, vol. 10(7), pages 1-17, June.
    3. Jiefeng Hu & Ka Wai Eric Cheng, 2017. "Predictive Control of Power Electronics Converters in Renewable Energy Systems," Energies, MDPI, vol. 10(4), pages 1-14, April.
    4. Chih-Lung Shen & You-Sheng Shen & Cheng-Tao Tsai, 2017. "Isolated DC-DC Converter for Bidirectional Power Flow Controlling with Soft-Switching Feature and High Step-Up/Down Voltage Conversion," Energies, MDPI, vol. 10(3), pages 1-23, March.
    5. Sheng-Yu Tseng & Hung-Yuan Wang, 2013. "A Photovoltaic Power System Using a High Step-up Converter for DC Load Applications," Energies, MDPI, vol. 6(2), pages 1-33, February.
    6. Yu-En Wu & Pin-Nan Chiu, 2017. "A High-Efficiency Isolated-Type Three-Port Bidirectional DC/DC Converter for Photovoltaic Systems," Energies, MDPI, vol. 10(4), pages 1-24, March.
    7. Jukka Viinamäki & Alon Kuperman & Teuvo Suntio, 2017. "Grid-Forming-Mode Operation of Boost-Power-Stage Converter in PV-Generator-Interfacing Applications," Energies, MDPI, vol. 10(7), pages 1-23, July.
    8. Xiancheng Zheng & Husan Ali & Xiaohua Wu & Haider Zaman & Shahbaz Khan, 2017. "Non-Linear Behavioral Modeling for DC-DC Converters and Dynamic Analysis of Distributed Energy Systems," Energies, MDPI, vol. 10(1), pages 1-21, January.
    9. Yong-Seng Wong & Jiann-Fuh Chen & Kuo-Bin Liu & Yi-Ping Hsieh, 2017. "A Novel High Step-Up DC-DC Converter with Coupled Inductor and Switched Clamp Capacitor Techniques for Photovoltaic Systems," Energies, MDPI, vol. 10(3), pages 1-17, March.
    10. Chih-Lung Shen & Hong-Yu Chen & Po-Chieh Chiu, 2015. "Integrated Three-Voltage-Booster DC-DC Converter to Achieve High Voltage Gain with Leakage-Energy Recycling for PV or Fuel-Cell Power Systems," Energies, MDPI, vol. 8(9), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mi Dong & Xiaoyu Tian & Li Li & Dongran Song & Lina Wang & Miao Zhao, 2018. "Model-Based Current Sharing Approach for DCM Interleaved Flyback Micro-Inverter," Energies, MDPI, vol. 11(7), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chien-Chun Huang & Tsung-Lin Tsai & Yao-Ching Hsieh & Huang-Jen Chiu, 2018. "A Bilateral Zero-Voltage Switching Bidirectional DC-DC Converter with Low Switching Noise," Energies, MDPI, vol. 11(10), pages 1-18, October.
    2. Miran Rodič & Miro Milanovič & Mitja Truntič & Benjamin Ošlaj, 2018. "Switched-Capacitor Boost Converter for Low Power Energy Harvesting Applications," Energies, MDPI, vol. 11(11), pages 1-29, November.
    3. Yu-En Wu & Yu-Lin Wu, 2016. "Design and Implementation of a High Efficiency, Low Component Voltage Stress, Single-Switch High Step-Up Voltage Converter for Vehicular Green Energy Systems," Energies, MDPI, vol. 9(10), pages 1-16, September.
    4. Chih-Lung Shen & Po-Chieh Chiu & Yan-Chi Lee, 2016. "Novel Interleaved Converter with Extra-High Voltage Gain to Process Low-Voltage Renewable-Energy Generation," Energies, MDPI, vol. 9(11), pages 1-12, October.
    5. Alessandro Labella & Filip Filipovic & Milutin Petronijevic & Andrea Bonfiglio & Renato Procopio, 2020. "An MPC Approach for Grid-Forming Inverters: Theory and Experiment," Energies, MDPI, vol. 13(9), pages 1-17, May.
    6. Wenzheng Xu & Nelson Hon Lung Chan & Siu Wing Or & Siu Lau Ho & Ka Wing Chan, 2017. "A New Control Method for a Bi-Directional Phase-Shift-Controlled DC-DC Converter with an Extended Load Range," Energies, MDPI, vol. 10(10), pages 1-17, October.
    7. Teuvo Suntio & Alon Kuperman, 2019. "Maximum Perturbation Step Size in MPP-Tracking Control for Ensuring Predicted PV Power Settling Behavior," Energies, MDPI, vol. 12(20), pages 1-19, October.
    8. Héctor Hidalgo & Rodolfo Orosco & Héctor Huerta & Nimrod Vázquez & Claudia Hernández & Sergio Pinto, 2023. "A High-Voltage-Gain DC–DC Boost Converter with Zero-Ripple Input Current for Renewable Applications," Energies, MDPI, vol. 16(13), pages 1-23, June.
    9. Juan-Guillermo Muñoz & Guillermo Gallo & Fabiola Angulo & Gustavo Osorio, 2018. "Slope Compensation Design for a Peak Current-Mode Controlled Boost-Flyback Converter," Energies, MDPI, vol. 11(11), pages 1-18, November.
    10. Cheng-Kai Lin & Jen-te Yu & Hao-Qun Huang & Jyun-Ting Wang & Hsing-Cheng Yu & Yen-Shin Lai, 2018. "A Dual-Voltage-Vector Model-Free Predictive Current Controller for Synchronous Reluctance Motor Drive Systems," Energies, MDPI, vol. 11(7), pages 1-29, July.
    11. Ramon Guzmán & Luís García de Vicuña & Miguel Castilla & Jaume Miret & Antonio Camacho, 2017. "Finite Control Set Model Predictive Control for a Three-Phase Shunt Active Power Filter with a Kalman Filter-Based Estimation," Energies, MDPI, vol. 10(10), pages 1-14, October.
    12. Chih-Lung Shen & You-Sheng Shen & Cheng-Tao Tsai, 2017. "Isolated DC-DC Converter for Bidirectional Power Flow Controlling with Soft-Switching Feature and High Step-Up/Down Voltage Conversion," Energies, MDPI, vol. 10(3), pages 1-23, March.
    13. Efrain Mendez & Alexandro Ortiz & Pedro Ponce & Israel Macias & David Balderas & Arturo Molina, 2020. "Improved MPPT Algorithm for Photovoltaic Systems Based on the Earthquake Optimization Algorithm," Energies, MDPI, vol. 13(12), pages 1-24, June.
    14. Yu-Chen Liu & Ming-Cheng Chen & Chun-Yu Yang & Katherine A. Kim & Huang-Jen Chiu, 2018. "High-Efficiency Isolated Photovoltaic Microinverter Using Wide-Band Gap Switches for Standalone and Grid-Tied Applications," Energies, MDPI, vol. 11(3), pages 1-15, March.
    15. Lebogang Masike & Michael Njoroge Gitau & Grain P. Adam, 2022. "A Unified Rule-Based Small-Signal Modelling Technique for Two-Switch, Non-Isolated DC–DC Converters in CCM," Energies, MDPI, vol. 15(15), pages 1-23, July.
    16. Ioana-Monica Pop-Calimanu & Septimiu Lica & Sorin Popescu & Dan Lascu & Ioan Lie & Radu Mirsu, 2019. "A New Hybrid Inductor-Based Boost DC-DC Converter Suitable for Applications in Photovoltaic Systems," Energies, MDPI, vol. 12(2), pages 1-32, January.
    17. Shahbaz Khan & Xiaobin Zhang & Bakht Muhammad Khan & Husan Ali & Haider Zaman & Muhammad Saad, 2018. "AC and DC Impedance Extraction for 3-Phase and 9-Phase Diode Rectifiers Utilizing Improved Average Mathematical Models," Energies, MDPI, vol. 11(3), pages 1-19, March.
    18. Xiangwu Yan & Xueyuan Zhang & Bo Zhang & Zhonghao Jia & Tie Li & Ming Wu & Jun Jiang, 2018. "A Novel Two-Stage Photovoltaic Grid-Connected Inverter Voltage-Type Control Method with Failure Zone Characteristics," Energies, MDPI, vol. 11(7), pages 1-17, July.
    19. Khairy Sayed & Mohammed G. Gronfula & Hamdy A. Ziedan, 2020. "Novel Soft-Switching Integrated Boost DC-DC Converter for PV Power System," Energies, MDPI, vol. 13(3), pages 1-17, February.
    20. Muhammad Saad & Husan Ali & Huamei Liu & Shahbaz Khan & Haider Zaman & Bakht Muhammad Khan & Du Kai & Ju Yongfeng, 2018. "A dq -Domain Impedance Measurement Methodology for Three-Phase Converters in Distributed Energy Systems," Energies, MDPI, vol. 11(10), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:1980-:d:121039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.