IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i9p1716-d228721.html
   My bibliography  Save this article

Design and Implementation of Finite Time Nonsingular Fast Terminal Sliding Mode Control for a Novel High Step-Up DC-DC Converter

Author

Listed:
  • Yicheng Liu

    (College of Electrical Engineering and Information Technology, Sichuan University, Chengdu 610065, China)

  • Jieping Wang

    (College of Electrical Engineering and Information Technology, Sichuan University, Chengdu 610065, China)

  • Haiyan Tu

    (College of Electrical Engineering and Information Technology, Sichuan University, Chengdu 610065, China)

Abstract

In this paper, a new, high step-up quadratic boost converter with high conversion efficiency is discussed. A storage capacitor and resonant inductor are connected in series with a clamp capacitor through a diode. These compose a voltage multiplier cell, which is applied on the switch of the quadratic boost converter. The clamp capacitor can protect the switch from a voltage spike and absorb energy when the switch turns off; then, the storage capacitor and resonant inductor are charged by the energy stored in the clamped capacitor to increase the voltage transfer gain. In addition, the voltage multiplier cell can also reduce the voltage stresses of power devices. Then, a 16 V input, 200 V output prototype with 80 W nominal power is built up and tested. Furthermore, a finite time fast terminal sliding mode (NFTSM) control is proposed, with constant frequency for the voltageFundamental Building B213:tracking control of this converter. The new NFTSM is obtained by introducing an adjustable nonlinear term into fast terminal sliding mode (FTSM) control, and a singularity problem is avoided. The experiment illustrates that the maximum efficiency of the proposed converter achieves 95% at D = 0.25 , V o = 150 V. The voltage stress is reduced to half of the corresponding component of the basic boost converter at the same voltage level. Moreover, the proposed NFTSM controller can track the reference signal, and provide a short settling time of about 48 ms with no overshoot, and the system response exhibits strong robustness against 11.7% input voltage disturbance and 30% load variation.

Suggested Citation

  • Yicheng Liu & Jieping Wang & Haiyan Tu, 2019. "Design and Implementation of Finite Time Nonsingular Fast Terminal Sliding Mode Control for a Novel High Step-Up DC-DC Converter," Energies, MDPI, vol. 12(9), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1716-:d:228721
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/9/1716/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/9/1716/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yong-Seng Wong & Jiann-Fuh Chen & Kuo-Bin Liu & Yi-Ping Hsieh, 2017. "A Novel High Step-Up DC-DC Converter with Coupled Inductor and Switched Clamp Capacitor Techniques for Photovoltaic Systems," Energies, MDPI, vol. 10(3), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Héctor Hidalgo & Rodolfo Orosco & Héctor Huerta & Nimrod Vázquez & Claudia Hernández & Sergio Pinto, 2023. "A High-Voltage-Gain DC–DC Boost Converter with Zero-Ripple Input Current for Renewable Applications," Energies, MDPI, vol. 16(13), pages 1-23, June.
    2. Miran Rodič & Miro Milanovič & Mitja Truntič & Benjamin Ošlaj, 2018. "Switched-Capacitor Boost Converter for Low Power Energy Harvesting Applications," Energies, MDPI, vol. 11(11), pages 1-29, November.
    3. Yiwang Wang & Chun Gan & Kai Ni & Xinhua Li & Houjun Tang & Yong Yang, 2017. "A Multifunctional Isolated and Non-Isolated Dual Mode Converter for Renewable Energy Conversion Applications," Energies, MDPI, vol. 10(12), pages 1-17, November.
    4. Shin-Ju Chen & Sung-Pei Yang & Chao-Ming Huang & Yu-Hua Chen, 2020. "Interleaved High Step-Up DC–DC Converter with Voltage-Lift and Voltage-Stack Techniques for Photovoltaic Systems," Energies, MDPI, vol. 13(10), pages 1-20, May.
    5. Eduardo Augusto Oliveira Barbosa & Márcio Rodrigo Santos de Carvalho & Leonardo Rodrigues Limongi & Marcelo Cabral Cavalcanti & Eduardo José Barbosa & Gustavo Medeiros de Souza Azevedo, 2021. "High-Gain High-Efficiency DC–DC Converter with Single-Core Parallel Operation Switched Inductors and Rectifier Voltage Multiplier Cell," Energies, MDPI, vol. 14(15), pages 1-18, July.
    6. Mauricio Dalla Vecchia & Giel Van den Broeck & Simon Ravyts & Johan Driesen, 2019. "Novel Step-Down DC–DC Converters Based on the Inductor–Diode and Inductor–Capacitor–Diode Structures in a Two-Stage Buck Converter," Energies, MDPI, vol. 12(6), pages 1-22, March.
    7. Shin-Ju Chen & Sung-Pei Yang & Chao-Ming Huang & Huann-Ming Chou & Meng-Jie Shen, 2018. "Interleaved High Step-Up DC-DC Converter Based on Voltage Multiplier Cell and Voltage-Stacking Techniques for Renewable Energy Applications," Energies, MDPI, vol. 11(7), pages 1-17, June.
    8. Flavio Balsamo & Davide Lauria & Fabio Mottola, 2019. "Design and Control of Coupled Inductor DC–DC Converters for MVDC Ship Power Systems," Energies, MDPI, vol. 12(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1716-:d:228721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.