IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i5p902-d212193.html
   My bibliography  Save this article

Power Management Control Strategy Based on Artificial Neural Networks for Standalone PV Applications with a Hybrid Energy Storage System

Author

Listed:
  • João Faria

    (Instituto de Telecomunicações and Universidade da Beira Interior, 6201-001 Covilhã, Portugal)

  • José Pombo

    (Instituto de Telecomunicações and Universidade da Beira Interior, 6201-001 Covilhã, Portugal)

  • Maria do Rosário Calado

    (Instituto de Telecomunicações and Universidade da Beira Interior, 6201-001 Covilhã, Portugal)

  • Sílvio Mariano

    (Instituto de Telecomunicações and Universidade da Beira Interior, 6201-001 Covilhã, Portugal)

Abstract

Standalone microgrids with photovoltaic (PV) solutions could be a promising solution for powering up off-grid communities. However, this type of application requires the use of energy storage systems (ESS) to manage the intermittency of PV production. The most commonly used ESSs are lithium-ion batteries (Li-ion), but this technology has a low lifespan, mostly caused by the imposed stress. To reduce the stress on Li-ion batteries and extend their lifespan, hybrid energy storage systems (HESS) began to emerge. Although the utilization of HESSs has demonstrated great potential to make up for the limitations of Li-ion batteries, a proper power management strategy is key to achieving the HESS objectives and ensuring a harmonized system operation. This paper proposes a novel power management strategy based on an artificial neural network for a standalone PV system with Li-ion batteries and super-capacitors (SC) HESS. A typical standalone PV system is used to demonstrate and validate the performance of the proposed power management strategy. To demonstrate its effectiveness, computational simulations with short and long duration were performed. The results show a minimization in Li-ion battery dynamic stress and peak current, leading to an increased lifespan of Li-ion batteries. Moreover, the proposed power management strategy increases the level of SC utilization in comparison with other well-established strategies in the literature.

Suggested Citation

  • João Faria & José Pombo & Maria do Rosário Calado & Sílvio Mariano, 2019. "Power Management Control Strategy Based on Artificial Neural Networks for Standalone PV Applications with a Hybrid Energy Storage System," Energies, MDPI, vol. 12(5), pages 1-24, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:902-:d:212193
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/5/902/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/5/902/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ricardo Velho & Miguel Beirão & Maria Do Rosário Calado & José Pombo & João Fermeiro & Sílvio Mariano, 2017. "Management System for Large Li-Ion Battery Packs with a New Adaptive Multistage Charging Method," Energies, MDPI, vol. 10(5), pages 1-21, May.
    2. Kou-Bin Liu & Chen-Yao Liu & Yi-Hua Liu & Yuan-Chen Chien & Bao-Sheng Wang & Yong-Seng Wong, 2016. "Analysis and Controller Design of a Universal Bidirectional DC-DC Converter," Energies, MDPI, vol. 9(7), pages 1-23, June.
    3. Yanzi Wang & Weida Wang & Yulong Zhao & Lei Yang & Wenjun Chen, 2016. "A Fuzzy-Logic Power Management Strategy Based on Markov Random Prediction for Hybrid Energy Storage Systems," Energies, MDPI, vol. 9(1), pages 1-20, January.
    4. Andrés Tobón & Julián Peláez-Restrepo & Juan P. Villegas-Ceballos & Sergio Ignacio Serna-Garcés & Jorge Herrera & Asier Ibeas, 2017. "Maximum Power Point Tracking of Photovoltaic Panels by Using Improved Pattern Search Methods," Energies, MDPI, vol. 10(9), pages 1-15, September.
    5. Chen, Zeyu & Xiong, Rui & Cao, Jiayi, 2016. "Particle swarm optimization-based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions," Energy, Elsevier, vol. 96(C), pages 197-208.
    6. Zhou, Zhibin & Benbouzid, Mohamed & Frédéric Charpentier, Jean & Scuiller, Franck & Tang, Tianhao, 2013. "A review of energy storage technologies for marine current energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 390-400.
    7. Uddin, Kotub & Moore, Andrew D. & Barai, Anup & Marco, James, 2016. "The effects of high frequency current ripple on electric vehicle battery performance," Applied Energy, Elsevier, vol. 178(C), pages 142-154.
    8. Chaoying Xia & Cong Zhang, 2015. "Power Management Strategy of Hybrid Electric Vehicles Based on Quadratic Performance Index," Energies, MDPI, vol. 8(11), pages 1-16, November.
    9. Y. D. Song & Qian Cao & Xiaoqiang Du & Hamid Reza Karimi, 2013. "Control Strategy Based on Wavelet Transform and Neural Network for Hybrid Power System," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-8, November.
    10. Chong, Lee Wai & Wong, Yee Wan & Rajkumar, Rajprasad Kumar & Rajkumar, Rajpartiban Kumar & Isa, Dino, 2016. "Hybrid energy storage systems and control strategies for stand-alone renewable energy power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 174-189.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João Faria & João Fermeiro & José Pombo & Maria Calado & Sílvio Mariano, 2020. "Proportional Resonant Current Control and Output-Filter Design Optimization for Grid-Tied Inverters Using Grey Wolf Optimizer," Energies, MDPI, vol. 13(8), pages 1-18, April.
    2. Bilal Naji Alhasnawi & Basil H. Jasim & Walid Issa & Amjad Anvari-Moghaddam & Frede Blaabjerg, 2020. "A New Robust Control Strategy for Parallel Operated Inverters in Green Energy Applications," Energies, MDPI, vol. 13(13), pages 1-31, July.
    3. Wei Zhang & Ming Zhong & Junfei Han & Yumei Sun & Yang Wang, 2022. "Research on the strategy of lithium-ion battery–supercapacitor hybrid energy storage to suppress power fluctuation of direct current microgrid [Load frequency control of a novel renewable energy in," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 1012-1017.
    4. Saif Jamal & Nadia M. L. Tan & Jagadeesh Pasupuleti, 2021. "A Review of Energy Management and Power Management Systems for Microgrid and Nanogrid Applications," Sustainability, MDPI, vol. 13(18), pages 1-31, September.
    5. Tiezhou Wu & Wenshan Yu & Lujun Wang & Linxin Guo & Zhiquan Tang, 2019. "Power Distribution Strategy of Microgrid Hybrid Energy Storage System Based on Improved Hierarchical Control," Energies, MDPI, vol. 12(18), pages 1-14, September.
    6. Takele Ferede Agajie & Armand Fopah-Lele & Ahmed Ali & Isaac Amoussou & Baseem Khan & Mahmoud Elsisi & Wirnkar Basil Nsanyuy & Om Prakash Mahela & Roberto Marcelo Álvarez & Emmanuel Tanyi, 2023. "Integration of Superconducting Magnetic Energy Storage for Fast-Response Storage in a Hybrid Solar PV-Biogas with Pumped-Hydro Energy Storage Power Plant," Sustainability, MDPI, vol. 15(13), pages 1-30, July.
    7. Xiaofei Zhang & Hongbin Ma, 2019. "Data-Driven Model-Free Adaptive Control Based on Error Minimized Regularized Online Sequential Extreme Learning Machine," Energies, MDPI, vol. 12(17), pages 1-17, August.
    8. Zhenxing Zhao & Kaijie Chen & Ying Chen & Yuxing Dai & Zeng Liu & Kuiyin Zhao & Huan Wang & Zishun Peng, 2021. "An Ultra-Fast Power Prediction Method Based on Simplified LSSVM Hyperparameters Optimization for PV Power Smoothing," Energies, MDPI, vol. 14(18), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xingyue Jiang & Jianjun Hu & Meixia Jia & Yong Zheng, 2018. "Parameter Matching and Instantaneous Power Allocation for the Hybrid Energy Storage System of Pure Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-18, July.
    2. Tran, Dai-Duong & Vafaeipour, Majid & El Baghdadi, Mohamed & Barrero, Ricardo & Van Mierlo, Joeri & Hegazy, Omar, 2020. "Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: Topologies and integrated energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Li, Tianyu & Liu, Huiying & Wang, Hui & Yao, Yongming, 2020. "Hierarchical predictive control-based economic energy management for fuel cell hybrid construction vehicles," Energy, Elsevier, vol. 198(C).
    4. Farmann, Alexander & Waag, Wladislaw & Sauer, Dirk Uwe, 2016. "Application-specific electrical characterization of high power batteries with lithium titanate anodes for electric vehicles," Energy, Elsevier, vol. 112(C), pages 294-306.
    5. Wenzheng Xu & Nelson Hon Lung Chan & Siu Wing Or & Siu Lau Ho & Ka Wing Chan, 2017. "A New Control Method for a Bi-Directional Phase-Shift-Controlled DC-DC Converter with an Extended Load Range," Energies, MDPI, vol. 10(10), pages 1-17, October.
    6. Xiong, Rui & Duan, Yanzhou & Cao, Jiayi & Yu, Quanqing, 2018. "Battery and ultracapacitor in-the-loop approach to validate a real-time power management method for an all-climate electric vehicle," Applied Energy, Elsevier, vol. 217(C), pages 153-165.
    7. Bảo-Huy Nguyễn & João Pedro F. Trovão & Ronan German & Alain Bouscayrol, 2020. "Real-Time Energy Management of Parallel Hybrid Electric Vehicles Using Linear Quadratic Regulation," Energies, MDPI, vol. 13(21), pages 1-19, October.
    8. Wang, Bin & Xu, Jun & Cao, Binggang & Ning, Bo, 2017. "Adaptive mode switch strategy based on simulated annealing optimization of a multi-mode hybrid energy storage system for electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 596-608.
    9. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
    10. Fatemeh Nasr Esfahani & Ahmed Darwish & Ahmed Massoud, 2022. "PV/Battery Grid Integration Using a Modular Multilevel Isolated SEPIC-Based Converter," Energies, MDPI, vol. 15(15), pages 1-25, July.
    11. Yang, Jibin & Xu, Xiaohui & Peng, Yiqiang & Zhang, Jiye & Song, Pengyun, 2019. "Modeling and optimal energy management strategy for a catenary-battery-ultracapacitor based hybrid tramway," Energy, Elsevier, vol. 183(C), pages 1123-1135.
    12. Hannan, M.A. & Ali, Jamal A. & Mohamed, Azah & Hussain, Aini, 2018. "Optimization techniques to enhance the performance of induction motor drives: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1611-1626.
    13. Mohamed Ali Zdiri & Tawfik Guesmi & Badr M. Alshammari & Khalid Alqunun & Abdulaziz Almalaq & Fatma Ben Salem & Hsan Hadj Abdallah & Ahmed Toumi, 2022. "Design and Analysis of Sliding-Mode Artificial Neural Network Control Strategy for Hybrid PV-Battery-Supercapacitor System," Energies, MDPI, vol. 15(11), pages 1-20, June.
    14. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    15. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    16. Qi Yao & Dylan-Dah-Chuan Lu & Gang Lei, 2021. "Accurate Online Battery Impedance Measurement Method with Low Output Voltage Ripples on Power Converters," Energies, MDPI, vol. 14(4), pages 1-16, February.
    17. Diego R. Espinoza Trejo & Ernesto Bárcenas & José E. Hernández Díez & Guillermo Bossio & Gerardo Espinosa Pérez, 2018. "Open- and Short-Circuit Fault Identification for a Boost dc/dc Converter in PV MPPT Systems," Energies, MDPI, vol. 11(3), pages 1-15, March.
    18. Brenda Rojas-Delgado & Monica Alonso & Hortensia Amaris & Juan de Santiago, 2019. "Wave Power Output Smoothing through the Use of a High-Speed Kinetic Buffer," Energies, MDPI, vol. 12(11), pages 1-28, June.
    19. Jiajun Liu & Tianxu Jin & Li Liu & Yajue Chen & Kun Yuan, 2017. "Multi-Objective Optimization of a Hybrid ESS Based on Optimal Energy Management Strategy for LHDs," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    20. Li, Jianwei & Xiong, Rui & Mu, Hao & Cornélusse, Bertrand & Vanderbemden, Philippe & Ernst, Damien & Yuan, Weijia, 2018. "Design and real-time test of a hybrid energy storage system in the microgrid with the benefit of improving the battery lifetime," Applied Energy, Elsevier, vol. 218(C), pages 470-478.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:902-:d:212193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.