IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p871-d102970.html
   My bibliography  Save this article

A High-Power DC-DC Converter Topology for Battery Charging Applications

Author

Listed:
  • Il-Oun Lee

    (Department of Electric Engineering, Myongji Unversity, Yongin-Si 449-728, Korea)

  • Jun-Young Lee

    (Department of Electric Engineering, Myongji Unversity, Yongin-Si 449-728, Korea)

Abstract

A DC-DC converter that can be applied for battery chargers with the power-capacity of over 7-kW for electric vehicles (EVs) is presented in this paper. Due to a new architecture, the proposed converter achieves a reduction of conduction losses at the primary side by as much as 50% and has many benefits such as much smaller circulating current, less duty-cycle loss, and lower secondary-voltage stress. In addition, its power handing capacity can be upsized easily with the use of two full-bridge inverters and two transformers. Besides, all the switches in the converter achieve zero-voltage switching (ZVS) during whole battery charging process, and the size of output filter can be significantly reduced. The circuit configuration, operation, and relevant analysis are presented, followed by the experiment on a prototype realized with a 7-kW charger. The experimental results validate the theoretical analysis and show the effectiveness of the proposed converter as battery charger.

Suggested Citation

  • Il-Oun Lee & Jun-Young Lee, 2017. "A High-Power DC-DC Converter Topology for Battery Charging Applications," Energies, MDPI, vol. 10(7), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:871-:d:102970
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/871/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/871/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefania Cuoghi & Riccardo Mandrioli & Lorenzo Ntogramatzidis & Grandi Gabriele, 2020. "Multileg Interleaved Buck Converter for EV Charging: Discrete-Time Model and Direct Control Design," Energies, MDPI, vol. 13(2), pages 1-18, January.
    2. Yiwang Wang & Chun Gan & Kai Ni & Xinhua Li & Houjun Tang & Yong Yang, 2017. "A Multifunctional Isolated and Non-Isolated Dual Mode Converter for Renewable Energy Conversion Applications," Energies, MDPI, vol. 10(12), pages 1-17, November.
    3. Chien-Chun Huang & Tsung-Lin Tsai & Yao-Ching Hsieh & Huang-Jen Chiu, 2018. "A Bilateral Zero-Voltage Switching Bidirectional DC-DC Converter with Low Switching Noise," Energies, MDPI, vol. 11(10), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:871-:d:102970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.