IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1730-d116921.html
   My bibliography  Save this article

Review: Characterization and Modeling of the Mechanical Properties of Lithium-Ion Batteries

Author

Listed:
  • Golriz Kermani

    (Electric Vehicle Safety Lab (EVSL), George Mason University, Fairfax, VA 22030, USA)

  • Elham Sahraei

    (Electric Vehicle Safety Lab (EVSL), George Mason University, Fairfax, VA 22030, USA
    Massachusetts Institute of Technology, Cambridge, MA 02139, USA)

Abstract

Li-ion batteries have become a dominant power source in consumer electronics and vehicular applications. The mobile use of batteries subjects them to various mechanical loads. The mechanisms that follow a mechanical deformation and lead to damage and failure in Li-ion batteries have only been studied in recent years. This paper is a comprehensive review of advancements in experimental and computational techniques for characterization of Li-ion batteries under mechanical abuse loading scenarios. A number of recent studies have used experimental methods to characterize deformation and failure of batteries and their components under various tensile and compressive loading conditions. Several authors have used the test data to propose material laws and develop finite element (FE) models. Then the models have been validated against tests at different levels from comparison of shapes to predicting failure and onset of short circuit. In the current review main aspects of each study have been discussed and their approach in mechanical testing, material characterization, FE modeling, and validation is analyzed. The main focus of this review is on mechanical properties at the level of a single battery.

Suggested Citation

  • Golriz Kermani & Elham Sahraei, 2017. "Review: Characterization and Modeling of the Mechanical Properties of Lithium-Ion Batteries," Energies, MDPI, vol. 10(11), pages 1-25, October.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1730-:d:116921
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1730/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1730/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Jun & Liu, Binghe & Wang, Xinyi & Hu, Dayong, 2016. "Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies," Applied Energy, Elsevier, vol. 172(C), pages 180-189.
    2. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheng Yang & Wenwei Wang & Cheng Lin & Weixiang Shen & Yiding Li, 2019. "Investigation of Internal Short Circuits of Lithium-Ion Batteries under Mechanical Abusive Conditions," Energies, MDPI, vol. 12(10), pages 1-16, May.
    2. Feng Zhu & Runzhou Zhou & David J. Sypeck, 2020. "Numerical Modeling and Safety Design for Lithium-Ion Vehicle Battery Modules Subject to Crush Loading," Energies, MDPI, vol. 14(1), pages 1-24, December.
    3. Wenwei, Wang & Yiding, Li & Cheng, Lin & Yuefeng, Su & Sheng, Yang, 2019. "State of charge-dependent failure prediction model for cylindrical lithium-ion batteries under mechanical abuse," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Ye Sol Lim & Hyun-Ah Jung & Haejin Hwang, 2018. "Fabrication of PEO-PMMA-LiClO 4 -Based Solid Polymer Electrolytes Containing Silica Aerogel Particles for All-Solid-State Lithium Batteries," Energies, MDPI, vol. 11(10), pages 1-10, September.
    5. Jiang, Yihui & Xu, Jun & Hou, Wenlong & Mei, Xuesong, 2021. "A stack pressure based equivalent mechanical model of lithium-ion pouch batteries," Energy, Elsevier, vol. 221(C).
    6. Jingyi Chen & Genwei Wang & Hui Song & Bin Wang & Guiying Wu & Jianyin Lei, 2022. "Stress and Displacement of Cylindrical Lithium-Ion Power Battery during Charging and Discharging," Energies, MDPI, vol. 15(21), pages 1-22, November.
    7. Damoon Soudbakhsh & Mehdi Gilaki & William Lynch & Peilin Zhang & Taeyoung Choi & Elham Sahraei, 2020. "Electrical Response of Mechanically Damaged Lithium-Ion Batteries," Energies, MDPI, vol. 13(17), pages 1-15, August.
    8. Golam Newaz & Sanket Mundhe & Leela Arava & Min Zhu & Omar Faruque & Saeed Barbat, 2020. "Direct Assessment of Separator Strain in Li-Ion Batteries at the Onset of Mechanically Induced Short Circuit," Energies, MDPI, vol. 13(3), pages 1-12, February.
    9. Bizhong Xia & Fan Liu & Chao Xu & Yifan Liu & Yongzhi Lai & Weiwei Zheng & Wei Wang, 2020. "Experimental and Simulation Modal Analysis of a Prismatic Battery Module," Energies, MDPI, vol. 13(8), pages 1-16, April.
    10. Zhijie Li & Jiqing Chen & Fengchong Lan & Yigang Li, 2021. "Constitutive Behavior and Mechanical Failure of Internal Configuration in Prismatic Lithium-Ion Batteries under Mechanical Loading," Energies, MDPI, vol. 14(5), pages 1-22, February.
    11. Gandoman, Foad H. & Jaguemont, Joris & Goutam, Shovon & Gopalakrishnan, Rahul & Firouz, Yousef & Kalogiannis, Theodoros & Omar, Noshin & Van Mierlo, Joeri, 2019. "Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiding, Li & Wenwei, Wang & Cheng, Lin & Xiaoguang, Yang & Fenghao, Zuo, 2021. "A safety performance estimation model of lithium-ion batteries for electric vehicles under dynamic compression," Energy, Elsevier, vol. 215(PA).
    2. He, Qiang & Yang, Yang & Luo, Chang & Zhai, Jun & Luo, Ronghua & Fu, Chunyun, 2022. "Energy recovery strategy optimization of dual-motor drive electric vehicle based on braking safety and efficient recovery," Energy, Elsevier, vol. 248(C).
    3. Ren, Hongbin & Zhao, Yuzhuang & Chen, Sizhong & Wang, Taipeng, 2019. "Design and implementation of a battery management system with active charge balance based on the SOC and SOH online estimation," Energy, Elsevier, vol. 166(C), pages 908-917.
    4. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    5. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    7. Xu Lei & Xi Zhao & Guiping Wang & Weiyu Liu, 2019. "A Novel Temperature–Hysteresis Model for Power Battery of Electric Vehicles with an Adaptive Joint Estimator on State of Charge and Power," Energies, MDPI, vol. 12(19), pages 1-24, September.
    8. E, Jiaqiang & Xiao, Hanxu & Tian, Sicheng & Huang, Yuxin, 2024. "A comprehensive review on thermal runaway model of a lithium-ion battery: Mechanism, thermal, mechanical, propagation, gas venting and combustion," Renewable Energy, Elsevier, vol. 229(C).
    9. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    10. Xuliang Tang & Heng Wan & Weiwen Wang & Mengxu Gu & Linfeng Wang & Linfeng Gan, 2023. "Lithium-Ion Battery Remaining Useful Life Prediction Based on Hybrid Model," Sustainability, MDPI, vol. 15(7), pages 1-18, April.
    11. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    12. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    13. Yang, Fangfang & Li, Weihua & Li, Chuan & Miao, Qiang, 2019. "State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network," Energy, Elsevier, vol. 175(C), pages 66-75.
    14. Xinwei Cong & Caiping Zhang & Jiuchun Jiang & Weige Zhang & Yan Jiang & Linjing Zhang, 2021. "A Comprehensive Signal-Based Fault Diagnosis Method for Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 14(5), pages 1-21, February.
    15. Qiaohua Fang & Xuezhe Wei & Haifeng Dai, 2019. "A Remaining Discharge Energy Prediction Method for Lithium-Ion Battery Pack Considering SOC and Parameter Inconsistency," Energies, MDPI, vol. 12(6), pages 1-24, March.
    16. Thomas F. Landinger & Guenter Schwarzberger & Guenter Hofer & Matthias Rose & Andreas Jossen, 2021. "Power Line Communications for Automotive High Voltage Battery Systems: Channel Modeling and Coexistence Study with Battery Monitoring," Energies, MDPI, vol. 14(7), pages 1-26, March.
    17. Alejandro Gismero & Erik Schaltz & Daniel-Ioan Stroe, 2020. "Recursive State of Charge and State of Health Estimation Method for Lithium-Ion Batteries Based on Coulomb Counting and Open Circuit Voltage," Energies, MDPI, vol. 13(7), pages 1-11, April.
    18. Qi Wang & Tian Gao & Xingcan Li, 2022. "SOC Estimation of Lithium-Ion Battery Based on Equivalent Circuit Model with Variable Parameters," Energies, MDPI, vol. 15(16), pages 1-15, August.
    19. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Gwan-Soo Park & Hee-Je Kim, 2019. "Online Remaining Useful Life Prediction for Lithium-Ion Batteries Using Partial Discharge Data Features," Energies, MDPI, vol. 12(22), pages 1-14, November.
    20. Ashikur Rahman & Xianke Lin & Chongming Wang, 2022. "Li-Ion Battery Anode State of Charge Estimation and Degradation Monitoring Using Battery Casing via Unknown Input Observer," Energies, MDPI, vol. 15(15), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1730-:d:116921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.