IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1871-d158579.html
   My bibliography  Save this article

Grid Integration and Power Smoothing of an Oscillating Water Column Wave Energy Converter

Author

Listed:
  • Gimara Rajapakse

    (Australian Maritime College, University of Tasmania, Launceston, Tasmania 7250, Australia)

  • Shantha Jayasinghe

    (Australian Maritime College, University of Tasmania, Launceston, Tasmania 7250, Australia)

  • Alan Fleming

    (Australian Maritime College, University of Tasmania, Launceston, Tasmania 7250, Australia)

  • Michael Negnevitsky

    (Centre for Renewable Energy and Power Systems, University of Tasmania, Hobart, Tasmania 7001, Australia)

Abstract

This paper applies model predictive control (MPC) for the power processing of an oscillating water column (OWC) wave energy conversion (WEC) system to achieve smooth power delivery to the grid. The particular air turbine design adopted in this study produces large power pulses ranging from 0 to 1 MW in magnitude, and thus, direct connection to the grid is practically impossible, especially in weak grid conditions. Therefore, energy storage is an essential element that should be integrated into this particular WEC system in order to absorb power pulses and thereby ensure smooth delivery of power to the grid. Taking into account the repetitive nature, duration, and magnitude of the power pulses, this study has chosen “supercapacitor” as the suitable energy storage technology. The supercapacitor energy storage (SCES) is integrated into the dc-link of the back-to-back power converter of the WEC system through a bidirectional dc-dc converter. In order to achieve the desired operation of this complex power converter arrangement, a finite control set MPC strategy is proposed in this paper. Performance of the proposed energy storage system (ESS) and control strategy are evaluated through computer simulations. Simulation results show that the proposed SCES system and the control strategy are able to achieve smooth power delivery to the grid amidst power pulses coming from the generator.

Suggested Citation

  • Gimara Rajapakse & Shantha Jayasinghe & Alan Fleming & Michael Negnevitsky, 2018. "Grid Integration and Power Smoothing of an Oscillating Water Column Wave Energy Converter," Energies, MDPI, vol. 11(7), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1871-:d:158579
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1871/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1871/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ceballos, Salvador & Rea, Judy & Robles, Eider & Lopez, Iraide & Pou, Josep & O'Sullivan, Dara, 2015. "Control strategies for combining local energy storage with wells turbine oscillating water column devices," Renewable Energy, Elsevier, vol. 83(C), pages 1097-1109.
    2. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    3. Gimara Rajapakse & Shantha Jayasinghe & Alan Fleming & Michael Negnevitsky, 2017. "A Model Predictive Control-Based Power Converter System for Oscillating Water Column Wave Energy Converters," Energies, MDPI, vol. 10(10), pages 1-17, October.
    4. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    5. Yu Zou & Ka Wai Eric Cheng, 2017. "A Vertical Flux-Switching Permanent Magnet Based Oscillating Wave Power Generator with Energy Storage," Energies, MDPI, vol. 10(7), pages 1-19, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oscar Barambones & Jose M. Gonzalez de Durana & Isidro Calvo, 2018. "Adaptive Sliding Mode Control for a Double Fed Induction Generator Used in an Oscillating Water Column System," Energies, MDPI, vol. 11(11), pages 1-27, October.
    2. Bo Pang & Heng Nian, 2019. "Improved Operation Strategy with Alternative Control Targets for Voltage Source Converter under Harmonically Distorted Grid Considering Inter-Harmonics," Energies, MDPI, vol. 12(7), pages 1-14, March.
    3. Simon Krüner & Christoph M. Hackl, 2022. "Nonlinear Modelling and Control of a Power Smoothing System for a Novel Wave Energy Converter Prototype," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    4. Jae Woong Shim & Heejin Kim & Kyeon Hur, 2019. "Incorporating State-of-Charge Balancing into the Control of Energy Storage Systems for Smoothing Renewable Intermittency," Energies, MDPI, vol. 12(7), pages 1-13, March.
    5. Gustavo Navarro & Jorge Torres & Marcos Blanco & Jorge Nájera & Miguel Santos-Herran & Marcos Lafoz, 2021. "Present and Future of Supercapacitor Technology Applied to Powertrains, Renewable Generation and Grid Connection Applications," Energies, MDPI, vol. 14(11), pages 1-29, May.
    6. Gustavo Navarro & Marcos Blanco & Jorge Torres & Jorge Nájera & Álvaro Santiago & Miguel Santos-Herran & Dionisio Ramírez & Marcos Lafoz, 2021. "Dimensioning Methodology of an Energy Storage System Based on Supercapacitors for Grid Code Compliance of a Wave Power Plant," Energies, MDPI, vol. 14(4), pages 1-20, February.
    7. Li, Ming & Luo, Haojie & Zhou, Shijie & Senthil Kumar, Gokula Manikandan & Guo, Xinman & Law, Tin Chung & Cao, Sunliang, 2022. "State-of-the-art review of the flexibility and feasibility of emerging offshore and coastal ocean energy technologies in East and Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    8. James Kelly & Endika Aldaiturriaga & Pablo Ruiz-Minguela, 2019. "Applying International Power Quality Standards for Current Harmonic Distortion to Wave Energy Converters and Verified Device Emulators," Energies, MDPI, vol. 12(19), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gimara Rajapakse & Shantha Jayasinghe & Alan Fleming & Michael Negnevitsky, 2017. "A Model Predictive Control-Based Power Converter System for Oscillating Water Column Wave Energy Converters," Energies, MDPI, vol. 10(10), pages 1-17, October.
    2. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
    3. He, Qiang & Yang, Yang & Luo, Chang & Zhai, Jun & Luo, Ronghua & Fu, Chunyun, 2022. "Energy recovery strategy optimization of dual-motor drive electric vehicle based on braking safety and efficient recovery," Energy, Elsevier, vol. 248(C).
    4. Ren, Hongbin & Zhao, Yuzhuang & Chen, Sizhong & Wang, Taipeng, 2019. "Design and implementation of a battery management system with active charge balance based on the SOC and SOH online estimation," Energy, Elsevier, vol. 166(C), pages 908-917.
    5. Mehdi Neshat & Nataliia Y. Sergiienko & Erfan Amini & Meysam Majidi Nezhad & Davide Astiaso Garcia & Bradley Alexander & Markus Wagner, 2020. "A New Bi-Level Optimisation Framework for Optimising a Multi-Mode Wave Energy Converter Design: A Case Study for the Marettimo Island, Mediterranean Sea," Energies, MDPI, vol. 13(20), pages 1-23, October.
    6. Tunde Aderinto & Hua Li, 2020. "Effect of Spatial and Temporal Resolution Data on Design and Power Capture of a Heaving Point Absorber," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    7. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    8. Licheri, Fabio & Ghisu, Tiziano & Cambuli, Francesco & Puddu, Pierpaolo, 2022. "Detailed investigation of the local flow-field in a Wells turbine coupled to an OWC simulator," Renewable Energy, Elsevier, vol. 197(C), pages 583-593.
    9. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    10. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    11. Xu Lei & Xi Zhao & Guiping Wang & Weiyu Liu, 2019. "A Novel Temperature–Hysteresis Model for Power Battery of Electric Vehicles with an Adaptive Joint Estimator on State of Charge and Power," Energies, MDPI, vol. 12(19), pages 1-24, September.
    12. José Carlos Ugaz Peña & Christian Luis Medina Rodríguez & Gustavo O. Guarniz Avalos, 2023. "Study of a New Wave Energy Converter with Perturb and Observe Maximum Power Point Tracking Method," Sustainability, MDPI, vol. 15(13), pages 1-18, July.
    13. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    14. Xuliang Tang & Heng Wan & Weiwen Wang & Mengxu Gu & Linfeng Wang & Linfeng Gan, 2023. "Lithium-Ion Battery Remaining Useful Life Prediction Based on Hybrid Model," Sustainability, MDPI, vol. 15(7), pages 1-18, April.
    15. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    16. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    17. Yang, Fangfang & Li, Weihua & Li, Chuan & Miao, Qiang, 2019. "State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network," Energy, Elsevier, vol. 175(C), pages 66-75.
    18. Xinwei Cong & Caiping Zhang & Jiuchun Jiang & Weige Zhang & Yan Jiang & Linjing Zhang, 2021. "A Comprehensive Signal-Based Fault Diagnosis Method for Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 14(5), pages 1-21, February.
    19. Qiaohua Fang & Xuezhe Wei & Haifeng Dai, 2019. "A Remaining Discharge Energy Prediction Method for Lithium-Ion Battery Pack Considering SOC and Parameter Inconsistency," Energies, MDPI, vol. 12(6), pages 1-24, March.
    20. Adriano Silva Bastos & Tâmara Rita Costa de Souza & Dieimys Santos Ribeiro & Mirian de Lourdes Noronha Motta Melo & Carlos Barreira Martinez, 2023. "Wave Energy Generation in Brazil: A Georeferenced Oscillating Water Column Inventory," Energies, MDPI, vol. 16(8), pages 1-24, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1871-:d:158579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.