IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p2046-d347796.html
   My bibliography  Save this article

Experimental and Simulation Modal Analysis of a Prismatic Battery Module

Author

Listed:
  • Bizhong Xia

    (Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China)

  • Fan Liu

    (Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China)

  • Chao Xu

    (Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China)

  • Yifan Liu

    (Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China)

  • Yongzhi Lai

    (Sunwoda Electronic Co. Ltd., Shenzhen 518108, China)

  • Weiwei Zheng

    (Sunwoda Electronic Co. Ltd., Shenzhen 518108, China)

  • Wei Wang

    (Sunwoda Electronic Co. Ltd., Shenzhen 518108, China)

Abstract

The battery pack is the core component of a new energy vehicle (NEV), and reducing the impact of vibration induced resonance from the ground is a prerequisite for the safety of an NEV. For a high-performance battery pack design, a clear understanding of the structural dynamics of the key part of battery pack, such as the battery module, is of great significance. Additionally, a proper computational model for simulations of battery module also plays a key role in correctly predicting the dynamic response of battery packs. In this paper, an experimental modal analysis (EMA) was performed on a typical commercial battery module, composed of twelve 37Ah lithium nickel manganese cobalt oxide (NMC) prismatic cells, to obtain modal parameters such as mode shapes and natural frequencies. Additionally, three modeling methods for a prismatic battery module were established for the simulation modal analysis. The method of simplifying the prismatic cell to homogenous isotropic material had a better performance than the detailed modeling method, in predicting the modal parameters. Simultaneously, a novel method that can quickly obtain the equivalent parameters of the cell was proposed. The experimental results indicated that the fundamental frequency of battery module was higher than the excitation frequency range (0–150 Hz) from the ground. The mode shapes of the simulation results were in good agreement with the experimental results, and the average error of the natural frequency was below 10%, which verified the validity of the numerical model.

Suggested Citation

  • Bizhong Xia & Fan Liu & Chao Xu & Yifan Liu & Yongzhi Lai & Weiwei Zheng & Wei Wang, 2020. "Experimental and Simulation Modal Analysis of a Prismatic Battery Module," Energies, MDPI, vol. 13(8), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2046-:d:347796
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/2046/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/2046/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weiller, C. & Neely, A., 2014. "Using electric vehicles for energy services: Industry perspectives," Energy, Elsevier, vol. 77(C), pages 194-200.
    2. Golriz Kermani & Elham Sahraei, 2017. "Review: Characterization and Modeling of the Mechanical Properties of Lithium-Ion Batteries," Energies, MDPI, vol. 10(11), pages 1-25, October.
    3. Du, Jiuyu & Meng, Xiangfeng & Li, Jianqiu & Wu, Xiaogang & Song, Ziyou & Ouyang, Minggao, 2018. "Insights into the characteristics of technologies and industrialization for plug-in electric cars in China," Energy, Elsevier, vol. 164(C), pages 910-924.
    4. Hartmut Popp & Gregor Glanz & Karoline Alten & Irina Gocheva & Wernfried Berghold & Alexander Bergmann, 2018. "Mechanical Frequency Response Analysis of Lithium-Ion Batteries to Disclose Operational Parameters," Energies, MDPI, vol. 11(3), pages 1-13, March.
    5. Ruiz, V. & Pfrang, A. & Kriston, A. & Omar, N. & Van den Bossche, P. & Boon-Brett, L., 2018. "A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1427-1452.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gandoman, Foad H. & Jaguemont, Joris & Goutam, Shovon & Gopalakrishnan, Rahul & Firouz, Yousef & Kalogiannis, Theodoros & Omar, Noshin & Van Mierlo, Joeri, 2019. "Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    3. Ramos-Real, Francisco J. & Ramírez-Díaz, Alfredo & Marrero, Gustavo A. & Perez, Yannick, 2018. "Willingness to pay for electric vehicles in island regions: The case of Tenerife (Canary Islands)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 140-149.
    4. Ostanek, Jason K. & Li, Weisi & Mukherjee, Partha P. & Crompton, K.R. & Hacker, Christopher, 2020. "Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model," Applied Energy, Elsevier, vol. 268(C).
    5. Okay, Kamil & Eray, Sermet & Eray, Aynur, 2022. "Development of prototype battery management system for PV system," Renewable Energy, Elsevier, vol. 181(C), pages 1294-1304.
    6. E, Jiaqiang & Xiao, Hanxu & Tian, Sicheng & Huang, Yuxin, 2024. "A comprehensive review on thermal runaway model of a lithium-ion battery: Mechanism, thermal, mechanical, propagation, gas venting and combustion," Renewable Energy, Elsevier, vol. 229(C).
    7. David Marcos & Maitane Garmendia & Jon Crego & José Antonio Cortajarena, 2021. "Functional Safety BMS Design Methodology for Automotive Lithium-Based Batteries," Energies, MDPI, vol. 14(21), pages 1-19, October.
    8. Richard Beaumont & Iain Masters & Abhishek Das & Steve Lucas & Arunn Thanikachalam & David Williams, 2021. "Methodology for Developing a Macro Finite Element Model of Lithium-Ion Pouch Cells for Predicting Mechanical Behaviour under Multiple Loading Conditions," Energies, MDPI, vol. 14(7), pages 1-21, March.
    9. Sheng Yang & Wenwei Wang & Cheng Lin & Weixiang Shen & Yiding Li, 2019. "Investigation of Internal Short Circuits of Lithium-Ion Batteries under Mechanical Abusive Conditions," Energies, MDPI, vol. 12(10), pages 1-16, May.
    10. Bhandari, Vivek & Sun, Kaiyang & Homans, Frances, 2018. "The profitability of vehicle to grid for system participants - A case study from the Electricity Reliability Council of Texas," Energy, Elsevier, vol. 153(C), pages 278-286.
    11. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    12. Liu, Dunnan & Xiao, Bowen, 2018. "Exploring the development of electric vehicles under policy incentives: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 120(C), pages 8-23.
    13. Pedram Asef & Marzia Milan & Andrew Lapthorn & Sanjeevikumar Padmanaban, 2021. "Future Trends and Aging Analysis of Battery Energy Storage Systems for Electric Vehicles," Sustainability, MDPI, vol. 13(24), pages 1-28, December.
    14. Jurasz, Jakub & Dąbek, Paweł B. & Kaźmierczak, Bartosz & Kies, Alexander & Wdowikowski, Marcin, 2018. "Large scale complementary solar and wind energy sources coupled with pumped-storage hydroelectricity for Lower Silesia (Poland)," Energy, Elsevier, vol. 161(C), pages 183-192.
    15. Golam Newaz & Sanket Mundhe & Leela Arava & Min Zhu & Omar Faruque & Saeed Barbat, 2020. "Direct Assessment of Separator Strain in Li-Ion Batteries at the Onset of Mechanically Induced Short Circuit," Energies, MDPI, vol. 13(3), pages 1-12, February.
    16. Wen, W. & Yang, S. & Zhou, P. & Gao, S.Z., 2021. "Impacts of COVID-19 on the electric vehicle industry: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. Bishop, Justin D.K. & Axon, Colin J. & Bonilla, David & Banister, David, 2016. "Estimating the grid payments necessary to compensate additional costs to prospective electric vehicle owners who provide vehicle-to-grid ancillary services," Energy, Elsevier, vol. 94(C), pages 715-727.
    18. Zhang, Guangxu & Wei, Xuezhe & Tang, Xuan & Zhu, Jiangong & Chen, Siqi & Dai, Haifeng, 2021. "Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    19. Sun, Li & Li, Guanru & You, Fengqi, 2020. "Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    20. Feng Zhu & Runzhou Zhou & David J. Sypeck, 2020. "Numerical Modeling and Safety Design for Lithium-Ion Vehicle Battery Modules Subject to Crush Loading," Energies, MDPI, vol. 14(1), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2046-:d:347796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.