IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1219-d504701.html
   My bibliography  Save this article

Constitutive Behavior and Mechanical Failure of Internal Configuration in Prismatic Lithium-Ion Batteries under Mechanical Loading

Author

Listed:
  • Zhijie Li

    (School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
    Guangdong Key Laboratory of Automotive Engineering, Guangzhou 510641, China)

  • Jiqing Chen

    (School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
    Guangdong Key Laboratory of Automotive Engineering, Guangzhou 510641, China)

  • Fengchong Lan

    (School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
    Guangdong Key Laboratory of Automotive Engineering, Guangzhou 510641, China)

  • Yigang Li

    (School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
    Guangdong Key Laboratory of Automotive Engineering, Guangzhou 510641, China)

Abstract

Internal short circuits and thermal runaway in lithium-ion batteries (LIBs) are mainly caused by deformation-induced failures in their internal components. Understanding the mechanisms of mechanical failure in the internal materials is of much importance for the design of LIB pack safety. In this work, the constitutive behaviors and deformation-induced failures of these component materials were tested and simulated. The stress-strain constitutive models of the anode/cathode and the separator under uniaxial tensile and compressive loads were proposed, and maximum tensile strain failure criteria were used to simulate the failure behaviors on these materials under the biaxial indentations. In order to understand the deformation failure mechanisms of ultrathin and multilayer materials within the prismatic cell, a mesoscale layer element model (LEM) with a separator-cathode-separator-anode structure was constructed. The deformation failure of LEM under spherical punches of different sizes was analyzed in detail, and the results were experimentally verified. Furthermore, the n-layer LEM stacked structure numerical model was constructed to calculate the progressive failure mechanisms of cathodes and anodes under punches. The results of test and simulation show the fracture failure of the cathodes under local indentation will trigger the failure of adjacent layers successively, and the internal short circuits are ultimately caused by separator failure owing to fractures and slips in the electrodes. The results improve the understanding of the failure behavior of the component materials in prismatic lithium-ion batteries, and provide some safety suggestions for the battery structure design in the future.

Suggested Citation

  • Zhijie Li & Jiqing Chen & Fengchong Lan & Yigang Li, 2021. "Constitutive Behavior and Mechanical Failure of Internal Configuration in Prismatic Lithium-Ion Batteries under Mechanical Loading," Energies, MDPI, vol. 14(5), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1219-:d:504701
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1219/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1219/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Golriz Kermani & Elham Sahraei, 2017. "Review: Characterization and Modeling of the Mechanical Properties of Lithium-Ion Batteries," Energies, MDPI, vol. 10(11), pages 1-25, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheng Yang & Wenwei Wang & Cheng Lin & Weixiang Shen & Yiding Li, 2019. "Investigation of Internal Short Circuits of Lithium-Ion Batteries under Mechanical Abusive Conditions," Energies, MDPI, vol. 12(10), pages 1-16, May.
    2. Golam Newaz & Sanket Mundhe & Leela Arava & Min Zhu & Omar Faruque & Saeed Barbat, 2020. "Direct Assessment of Separator Strain in Li-Ion Batteries at the Onset of Mechanically Induced Short Circuit," Energies, MDPI, vol. 13(3), pages 1-12, February.
    3. Feng Zhu & Runzhou Zhou & David J. Sypeck, 2020. "Numerical Modeling and Safety Design for Lithium-Ion Vehicle Battery Modules Subject to Crush Loading," Energies, MDPI, vol. 14(1), pages 1-24, December.
    4. Gandoman, Foad H. & Jaguemont, Joris & Goutam, Shovon & Gopalakrishnan, Rahul & Firouz, Yousef & Kalogiannis, Theodoros & Omar, Noshin & Van Mierlo, Joeri, 2019. "Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Wenwei, Wang & Yiding, Li & Cheng, Lin & Yuefeng, Su & Sheng, Yang, 2019. "State of charge-dependent failure prediction model for cylindrical lithium-ion batteries under mechanical abuse," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Ye Sol Lim & Hyun-Ah Jung & Haejin Hwang, 2018. "Fabrication of PEO-PMMA-LiClO 4 -Based Solid Polymer Electrolytes Containing Silica Aerogel Particles for All-Solid-State Lithium Batteries," Energies, MDPI, vol. 11(10), pages 1-10, September.
    7. Bizhong Xia & Fan Liu & Chao Xu & Yifan Liu & Yongzhi Lai & Weiwei Zheng & Wei Wang, 2020. "Experimental and Simulation Modal Analysis of a Prismatic Battery Module," Energies, MDPI, vol. 13(8), pages 1-16, April.
    8. Jingyi Chen & Genwei Wang & Hui Song & Bin Wang & Guiying Wu & Jianyin Lei, 2022. "Stress and Displacement of Cylindrical Lithium-Ion Power Battery during Charging and Discharging," Energies, MDPI, vol. 15(21), pages 1-22, November.
    9. Jiang, Yihui & Xu, Jun & Hou, Wenlong & Mei, Xuesong, 2021. "A stack pressure based equivalent mechanical model of lithium-ion pouch batteries," Energy, Elsevier, vol. 221(C).
    10. Damoon Soudbakhsh & Mehdi Gilaki & William Lynch & Peilin Zhang & Taeyoung Choi & Elham Sahraei, 2020. "Electrical Response of Mechanically Damaged Lithium-Ion Batteries," Energies, MDPI, vol. 13(17), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1219-:d:504701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.