IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i4p393-d1590197.html
   My bibliography  Save this article

Assessing the Potential Distribution of Lonicera japonica in China Under Climate Change: A Biomod2 Ensemble Model-Based Study

Author

Listed:
  • Yaxuan Pan

    (College of Life Science, China West Normal University, Nanchong 637002, China
    These authors contributed equally to this work.)

  • Yijie Guan

    (College of Life Science, China West Normal University, Nanchong 637002, China
    These authors contributed equally to this work.)

  • Shan Lv

    (College of Life Science, China West Normal University, Nanchong 637002, China)

  • Xiaoyu Huang

    (College of Life Science, China West Normal University, Nanchong 637002, China)

  • Yijun Lin

    (College of Life Science, China West Normal University, Nanchong 637002, China)

  • Chaoyang Wei

    (College of Life Science, China West Normal University, Nanchong 637002, China)

  • Danping Xu

    (College of Life Science, China West Normal University, Nanchong 637002, China)

Abstract

Lonicera japonica , an importante rsource plant, possesses significant medicinal, economic, and ecological value. To understand its response to climate change and to optimize its conservation and utilization, this study employed the Biomod2 ensemble model to predict its potential distribution under future climate scenarios and identified key environmental factors influencing its distribution. The results showed that under current climatic conditions, the potential distribution of honeysuckle is primarily concentrated in low-altitude regions of central and eastern China and the Sichuan Basin. In future scenarios, the overall distribution pattern changes less, and the area of highly suitable habitats slightly decreases by 0.80%. Distribution analysis indicated a trend of northward migration towards higher latitudes. Temperature-related factors, including temperature seasonality, the minimum temperature of the coldest month, the mean temperature of the coldest quarter, and the annual mean temperature, were identified as dominant factors affecting its distribution. The Biomod2 ensemble model significantly improved the precision and accuracy of suitability predictions compared to single models, providing a scientific basis for predicting the future geographic distribution of honeysuckle and for establishing and utilizing its cultivation regions in China.

Suggested Citation

  • Yaxuan Pan & Yijie Guan & Shan Lv & Xiaoyu Huang & Yijun Lin & Chaoyang Wei & Danping Xu, 2025. "Assessing the Potential Distribution of Lonicera japonica in China Under Climate Change: A Biomod2 Ensemble Model-Based Study," Agriculture, MDPI, vol. 15(4), pages 1-16, February.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:4:p:393-:d:1590197
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/4/393/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/4/393/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. Alan Pounds & Martín R. Bustamante & Luis A. Coloma & Jamie A. Consuegra & Michael P. L. Fogden & Pru N. Foster & Enrique La Marca & Karen L. Masters & Andrés Merino-Viteri & Robert Puschendorf & S, 2006. "Widespread amphibian extinctions from epidemic disease driven by global warming," Nature, Nature, vol. 439(7073), pages 161-167, January.
    2. Julia Bailey-Serres & Jane E. Parker & Elizabeth A. Ainsworth & Giles E. D. Oldroyd & Julian I. Schroeder, 2019. "Genetic strategies for improving crop yields," Nature, Nature, vol. 575(7781), pages 109-118, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chunrong Mi & Liang Ma & Mengyuan Yang & Xinhai Li & Shai Meiri & Uri Roll & Oleksandra Oskyrko & Daniel Pincheira-Donoso & Lilly P. Harvey & Daniel Jablonski & Barbod Safaei-Mahroo & Hanyeh Ghaffari , 2023. "Global Protected Areas as refuges for amphibians and reptiles under climate change," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Ci Kong & Yin Yang & Tiancong Qi & Shuyi Zhang, 2025. "Predictive genetic circuit design for phenotype reprogramming in plants," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    3. Mu, Qing & Cai, Huanjie & Sun, Shikun & Wen, Shanshan & Xu, Jiatun & Dong, Mengqi & Saddique, Qaisar, 2021. "The physiological response of winter wheat under short-term drought conditions and the sensitivity of different indices to soil water changes," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Ru Fang, Yan & Zhang, Silu & Zhou, Ziqiao & Shi, Wenjun & Hui Xie, Guang, 2022. "Sustainable development in China: Valuation of bioenergy potential and CO2 reduction from crop straw," Applied Energy, Elsevier, vol. 322(C).
    5. Yongming Liu & Gengxin Xie & Qichang Yang & Maozhi Ren, 2021. "Biotechnological development of plants for space agriculture," Nature Communications, Nature, vol. 12(1), pages 1-3, December.
    6. Ali, Shahzad & Li, Zongzhen & Zhang, Xia & Xi, Yueling & Shaik, Mohammed Rafi & Khan, Mujeeb, 2024. "How do novel plant growth regulators and cultivation models strategies affect mechanical strength, lodging resistance and maize productivity in semi-arid regions?," Agricultural Water Management, Elsevier, vol. 295(C).
    7. Haoran Zhang & Limin Jiao & Cai Li & Zhongci Deng & Zhen Wang & Qiqi Jia & Xihong Lian & Yaolin Liu & Yuanchao Hu, 2024. "Global environmental impacts of food system from regional shock: Russia-Ukraine war as an example," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    8. Mohamed Mehana & Mohamed Abdelrahman & Yasmin Emadeldin & Jai S. Rohila & Raghupathy Karthikeyan, 2021. "Impact of Genetic Improvements of Rice on Its Water Use and Effects of Climate Variability in Egypt," Agriculture, MDPI, vol. 11(9), pages 1-14, September.
    9. Taiyu Chen & Marta Hojka & Philip Davey & Yaqi Sun & Gregory F. Dykes & Fei Zhou & Tracy Lawson & Peter J. Nixon & Yongjun Lin & Lu-Ning Liu, 2023. "Engineering α-carboxysomes into plant chloroplasts to support autotrophic photosynthesis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Tews, Joerg & Ferguson, Michael A.D. & Fahrig, Lenore, 2007. "Potential net effects of climate change on High Arctic Peary caribou: Lessons from a spatially explicit simulation model," Ecological Modelling, Elsevier, vol. 207(2), pages 85-98.
    11. Gabriela Briceño & Maria Cristina Diez & Graciela Palma & Milko Jorquera & Heidi Schalchli & Juliana María Saez & Claudia Susana Benimeli, 2024. "Neonicotinoid Effects on Soil Microorganisms: Responses and Mitigation Strategies," Sustainability, MDPI, vol. 16(9), pages 1-18, April.
    12. Mu, Qing & Xu, Jiatun & Yu, Miao & Guo, Zijian & Dong, Mengqi & Cao, Yuxin & Zhang, Suiqi & Sun, Shikun & Cai, Huanjie, 2022. "Physiological response of winter wheat (Triticum aestivum L.) during vegetative growth to gradual, persistent and intermittent drought," Agricultural Water Management, Elsevier, vol. 274(C).
    13. Yigezu A. Yigezu & Zewdie Bishaw & Abdoul Aziz Niane & Jeffrey Alwang & Tamer El-Shater & Mohamed Boughlala & Aden Aw-Hassan & Wuletaw Tadesse & Filippo M. Bassi & Ahmed Amri & Michael Baum, 2021. "Institutional and farm-level challenges limiting the diffusion of new varieties from public and CGIAR centers: The case of wheat in Morocco," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(6), pages 1359-1377, December.
    14. Mostafa Alamholo & Alireza Tarinejad, 2023. "Molecular mechanism of drought stress tolerance in barley (Hordeum vulgare L.) via a combined analysis of the transcriptome data," Czech Journal of Genetics and Plant Breeding, Czech Academy of Agricultural Sciences, vol. 59(2), pages 76-94.
    15. Edoardo Bertolini & Brian R. Rice & Max Braud & Jiani Yang & Sarah Hake & Josh Strable & Alexander E. Lipka & Andrea L. Eveland, 2025. "Regulatory variation controlling architectural pleiotropy in maize," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    16. Shuyao Li & Wenfu Wu & Yujia Wang & Na Zhang & Fanhui Sun & Feng Jiang & Xiaoshuai Wei, 2023. "Production Data Management of Smart Farming Based on Shili Theory," Agriculture, MDPI, vol. 13(4), pages 1-26, March.
    17. Hong Yu & Jiayang Li, 2022. "Breeding future crops to feed the world through de novo domestication," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    18. Qiao Wen Tan & Peng Ken Lim & Zhong Chen & Asher Pasha & Nicholas Provart & Marius Arend & Zoran Nikoloski & Marek Mutwil, 2023. "Cross-stress gene expression atlas of Marchantia polymorpha reveals the hierarchy and regulatory principles of abiotic stress responses," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    19. Oli, Madan K. & Loughry, W.J. & Caswell, Hal & Perez-Heydrich, Carolina & McDonough, Colleen M. & Truman, Richard W., 2017. "Dynamics of leprosy in nine-banded armadillos: Net reproductive number and effects on host population dynamics," Ecological Modelling, Elsevier, vol. 350(C), pages 100-108.
    20. Matin Qaim, 2020. "Role of New Plant Breeding Technologies for Food Security and Sustainable Agricultural Development," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 42(2), pages 129-150, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:4:p:393-:d:1590197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.