IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i9p3769-d1386620.html
   My bibliography  Save this article

Neonicotinoid Effects on Soil Microorganisms: Responses and Mitigation Strategies

Author

Listed:
  • Gabriela Briceño

    (Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile
    Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile)

  • Maria Cristina Diez

    (Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile
    Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile)

  • Graciela Palma

    (Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile
    Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile)

  • Milko Jorquera

    (Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile)

  • Heidi Schalchli

    (Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile)

  • Juliana María Saez

    (Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pje. Caseros, Tucumán 4000, Argentina)

  • Claudia Susana Benimeli

    (Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pje. Caseros, Tucumán 4000, Argentina)

Abstract

Pesticides play a critical role in pest management and agricultural productivity; however, their misuse or overuse can lead to adverse effects on human health and the environment, including impacts on ecosystems and contamination. Currently, neonicotinoids (NNIs) are the most widely used systemic insecticides and are questioned worldwide for their possible impacts on pollinators. After NNI application, a substantial portion is not absorbed by the plant and may accumulate in the soil, affecting the soil microbial community. In this review, we explore the main studies carried out either in the laboratory or in the field about this matter. The studies report that the application of NNIs affects soil microbial activity and can act on microbial communities differently due to their unique chemical properties, degradation in soil, soil type, effects on soil properties, and methods of application. NNIs alter the diversity, structure, and abundance of soil microbes, in some cases increasing or decreasing their representativeness in soil. Bacterial phyla like Pseudomonadota, Bacillota, Actinomycetota, and Nitrospirota increase after NNI exposure, just like the families Nitrosomonadaceae, Nitrososphaeraceae, Nitrospiraceae, Sphingomonadaceae, Streptomycetaceae, and Catenulisporaceae. At the bacterial genus level, Nitrospira was associated with a decrease in nitrification processes in soil. The bacterial genera Sphingomonas , Streptomyces , Catenulispora , Brevundimonas , Pedobacter, and Hydrogenophaga are related to NNI degradation after application. Microorganisms could minimize the impacts of NNIs in agricultural soil. Therefore, the use of bioinoculation as a bioremediation tool is explored as an alternative to contribute to agricultural sustainability.

Suggested Citation

  • Gabriela Briceño & Maria Cristina Diez & Graciela Palma & Milko Jorquera & Heidi Schalchli & Juliana María Saez & Claudia Susana Benimeli, 2024. "Neonicotinoid Effects on Soil Microorganisms: Responses and Mitigation Strategies," Sustainability, MDPI, vol. 16(9), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3769-:d:1386620
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/9/3769/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/9/3769/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julia Bailey-Serres & Jane E. Parker & Elizabeth A. Ainsworth & Giles E. D. Oldroyd & Julian I. Schroeder, 2019. "Genetic strategies for improving crop yields," Nature, Nature, vol. 575(7781), pages 109-118, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Lihong & Quan, Hao & Wu, Lina & Zhang, Xi & Feng, Hao & Ding, Dianyuan & Siddique, Kadambot H.M., 2023. "Responses of winter wheat yield and water productivity to sowing time and plastic mulching in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 289(C).
    2. Mu, Qing & Cai, Huanjie & Sun, Shikun & Wen, Shanshan & Xu, Jiatun & Dong, Mengqi & Saddique, Qaisar, 2021. "The physiological response of winter wheat under short-term drought conditions and the sensitivity of different indices to soil water changes," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Ru Fang, Yan & Zhang, Silu & Zhou, Ziqiao & Shi, Wenjun & Hui Xie, Guang, 2022. "Sustainable development in China: Valuation of bioenergy potential and CO2 reduction from crop straw," Applied Energy, Elsevier, vol. 322(C).
    4. Yongming Liu & Gengxin Xie & Qichang Yang & Maozhi Ren, 2021. "Biotechnological development of plants for space agriculture," Nature Communications, Nature, vol. 12(1), pages 1-3, December.
    5. Ali, Shahzad & Li, Zongzhen & Zhang, Xia & Xi, Yueling & Shaik, Mohammed Rafi & Khan, Mujeeb, 2024. "How do novel plant growth regulators and cultivation models strategies affect mechanical strength, lodging resistance and maize productivity in semi-arid regions?," Agricultural Water Management, Elsevier, vol. 295(C).
    6. Haoran Zhang & Limin Jiao & Cai Li & Zhongci Deng & Zhen Wang & Qiqi Jia & Xihong Lian & Yaolin Liu & Yuanchao Hu, 2024. "Global environmental impacts of food system from regional shock: Russia-Ukraine war as an example," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    7. Mohamed Mehana & Mohamed Abdelrahman & Yasmin Emadeldin & Jai S. Rohila & Raghupathy Karthikeyan, 2021. "Impact of Genetic Improvements of Rice on Its Water Use and Effects of Climate Variability in Egypt," Agriculture, MDPI, vol. 11(9), pages 1-14, September.
    8. Robert G. Chambers & Yu Sheng, "undated". "Genetically Modified Organisms and Agricultural Productivity," Working Papers 3, International Society for Efficiency and Productivity Analysis.
    9. Taiyu Chen & Marta Hojka & Philip Davey & Yaqi Sun & Gregory F. Dykes & Fei Zhou & Tracy Lawson & Peter J. Nixon & Yongjun Lin & Lu-Ning Liu, 2023. "Engineering α-carboxysomes into plant chloroplasts to support autotrophic photosynthesis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Yanxi Zhao & Dengpan Xiao & Huizi Bai & Jianzhao Tang & De Li Liu & Yongqing Qi & Yanjun Shen, 2022. "The Prediction of Wheat Yield in the North China Plain by Coupling Crop Model with Machine Learning Algorithms," Agriculture, MDPI, vol. 13(1), pages 1-19, December.
    11. Jakob Hoffmann & Johannes Glückler, 2023. "Technological Cohesion and Convergence: A Main Path Analysis of the Bioeconomy, 1900–2020," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
    12. Jerzy H. Czembor & Elzbieta Czembor & Marcin Krystek & Juliusz Pukacki, 2023. "AgroGenome: Interactive Genomic-Based Web Server Developed Based on Data Collected for Accessions Stored in Polish Genebank," Agriculture, MDPI, vol. 13(1), pages 1-16, January.
    13. Mu, Qing & Xu, Jiatun & Yu, Miao & Guo, Zijian & Dong, Mengqi & Cao, Yuxin & Zhang, Suiqi & Sun, Shikun & Cai, Huanjie, 2022. "Physiological response of winter wheat (Triticum aestivum L.) during vegetative growth to gradual, persistent and intermittent drought," Agricultural Water Management, Elsevier, vol. 274(C).
    14. Yigezu A. Yigezu & Zewdie Bishaw & Abdoul Aziz Niane & Jeffrey Alwang & Tamer El-Shater & Mohamed Boughlala & Aden Aw-Hassan & Wuletaw Tadesse & Filippo M. Bassi & Ahmed Amri & Michael Baum, 2021. "Institutional and farm-level challenges limiting the diffusion of new varieties from public and CGIAR centers: The case of wheat in Morocco," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(6), pages 1359-1377, December.
    15. David R. Just & Julie M. Goddard, 2023. "Behavioral framing and consumer acceptance of new food technologies: Factors influencing consumer demand for active packaging," Agribusiness, John Wiley & Sons, Ltd., vol. 39(1), pages 3-27, January.
    16. Mostafa Alamholo & Alireza Tarinejad, 2023. "Molecular mechanism of drought stress tolerance in barley (Hordeum vulgare L.) via a combined analysis of the transcriptome data," Czech Journal of Genetics and Plant Breeding, Czech Academy of Agricultural Sciences, vol. 59(2), pages 76-94.
    17. Bai, Youshuai & Zhang, Hengjia & Jia, Shenghai & Huang, Caixia & Zhao, Xia & Wei, Huiqin & Yang, Shurui & Ma, Yan & Kou, Rui, 2022. "Plastic film mulching combined with sand tube irrigation improved yield, water use efficiency, and fruit quality of jujube in an arid desert area of Northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    18. Bert Lenaerts & Yann de Mey & Matty Demont, 2022. "Revisiting multi‐stage models for upstream technology adoption: Evidence from rapid generation advance in rice breeding," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(1), pages 277-300, February.
    19. Shuyao Li & Wenfu Wu & Yujia Wang & Na Zhang & Fanhui Sun & Feng Jiang & Xiaoshuai Wei, 2023. "Production Data Management of Smart Farming Based on Shili Theory," Agriculture, MDPI, vol. 13(4), pages 1-26, March.
    20. Hong Yu & Jiayang Li, 2022. "Breeding future crops to feed the world through de novo domestication," Nature Communications, Nature, vol. 13(1), pages 1-4, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3769-:d:1386620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.